Иностранный опыт: Интеллектуальные транспортные системы. Интеллектуальные транспортные системы — проблемы на пути внедрения в России Тест интеллектуальные транспортные системы морской

Использующая инновационные разработки в моделировании транспортных систем и регулировании транспортных потоков, предоставляющая конечным потребителям большую информативность и безопасность, а также качественно повышающая уровень взаимодействия участников движения по сравнению с обычными транспортными системами.

Несмотря на то, что фактически ИТС может включать все виды транспорта, европейское определение ИТС согласно директиве 2010/40/EU of 7 July 2010 трактует ИТС как систему, в которой применяются информационные и коммуникационные технологии в сфере автотранспорта (включая инфраструктуру, транспортные средства, участников системы, а также дорожно-транспортное регулирование), и имеющую наряду с этим возможность взаимодействия с другими видами транспорта.

Предпосылки

Интерес к ИТС появился с приходом проблем дорожных заторов как результат объединения современных технологий моделирования, управления в реальном времени, а также коммуникационных технологий. Дорожные заторы появляются по всему миру как результат увеличивающейся автомобилизации, урбанизации, а также как роста населения, так и увеличивающейся плотности заселения территории. Дорожные заторы уменьшают эффективность дорожно-транспортной инфраструктуры, увеличивая таким образом время пути, расход топлива и уровень загрязнения окружающей среды.

Интеллектуальные транспортные технологии

ИТС различаются по применяемым технологиям: от простых систем автомобильной навигации, регулирования светофоров, систем регулирования грузоперевозок, различных систем оповестительных знаков (включая информационные табло), систем распознавания автомобильных номеров и систем регистрации скорости транспортных средств, до систем видеонаблюдения, а также до систем, интегрирующих информационные потоки и потоки обратной связи из большого количества различных источников, например из систем управления парковками (Parking guidance and information (PGI) systems), метеослужб, систем разведения мостов и прочих. Более того, в ИТС могут применяться технологии предсказывания на основе моделирования и накопленной ранее информации.

Беспроводная связь

В ИТС могут использоваться различные виды беспроводной связи.

Например, может использоваться радиосвязь на большие (ДМВ) и короткие (УКВ) расстояния.

На небольших расстояниях может использоваться беспроводная связь по стандартам IEEE 802.11 (Wi-Fi), особенно стандарт IEEE 802.11p (WAVE). Также, например, в США используется стандарт DSRC , продвигаемый американской общественной организацией интеллектуального транспорта и департаментом транспорта США .

Вычислительные технологии

Современные разработки в технологиях встраиваемых систем позволяют использовать операционные системы реального времени, а также более высокоуровневые приложения, дающие возможность применять разработки в области искусственного интеллекта. Рост мощностей процессоров, используемых во встраиваемых системах, а также повышение их совместимости с процессорами в персональных компьютерах, ведёт к расширению возможностей повторного использования кода и переносу более интеллектуальных сервисов с уровня ПК в уровень встраиваемой системы.

См. также

Ссылки

  • Railway Safety, Reliability, and Security: Technologies and Systems Engineering. Francesco Flammini (IEEE Computer Society, Italy)
  • Интеллектуальные транспортные системы на сайте ФЦП «Повышение безопасности дорожного движения в 2006-2012 годах»
  • Иностранный опыт: Интеллектуальные транспортные системы

В настоящее время одной из важных проблем современных городов является сокращение времени и своевременность доставки пассажиров городским пассажирским транспортом. Из-за низкого уровня управления транспортными потоками и недостаточно развитой инфраструктуры транспортной сети это становится все более затруднительно. А также обостряются такие проблемы, как аварийность, рост потребления невосполнимых источников энергии, негативное влияние на окружающую среду, постоянные задержки при перевозке грузов и пассажиров всеми видами транспорта.

Развивая исключительно транспортную сеть, данную проблему решить невозможно, поскольку рост автомобилизации и рост использования автомобильного транспорта всегда превышают возможности по модернизации транспортной инфраструктуры.

Мировым транспортным сообществом решение было найдено в создании систем не управления транспортом, а транспортных систем, в которых средства связи, управления и контроля изначально встроены в транспортные средства и объекты транспортной инфраструктуры, а возможность принятия управленческого решения на основе получаемой в режиме реального времени информации доступна не только транспортным операторам, но и всем пользователям транспорта.

Данная задача решается путем построения интегрированной системы: люди, транспортная инфраструктура, транспортные средства; максимальным использованием новейших информационных управляющих технологий. Такие современные системы стали называть интеллектуальными. В последнее десятилетие словосочетание «интеллектуальная транспортная система» и аббревиатура ITS (ИТС) стали обычными в стратегических, политических и программных документах развитых стран.

Интеллектуальная транспортная система – это системная интеграция современных информационных и коммуникационных технологий, средств автоматизации с транспортной инфраструктурой, транспортными средствами и пользователями, ориентированная на повышение безопасности, эффективности транспортного процесса, комфортности для водителя и пользователей транспорта.

В основе системы ИТС – оптические датчики, следящие за дорогой. На перекрестках они передают сигналы на специальный модуль в автомобиле, те синхронизируют получаемые данные с информацией, поступающей от навигационных систем, и предупреждают водителя о сложившейся ситуации (чем это может грозить).

Российская ИТС позволяет обеспечить:

1. Информирование водителей о нарушении ими правил дорожного движения и эксплуатации автомобиля, а также о долгосрочном и краткосрочном прогнозе о состоянии условий дорожного движения;

2. Автоматическую фиксацию случаев нарушения правил дорожного движения для выявления и наказания виновных;


3. Повышение внимания водителей при управлении в различных напряженных условиях движения;

4. Сокращение времени поездок пассажиров всеми наземными видами городского транспорта, что в настоящее время весьма актуально;

5. Увеличение пропускной способности улиц и дорог города за счет регулирования транспортных потоков и формирования предупредительной информации об условиях дорожного движения;

6. Обеспечение возможности выбора пассажиром оптимального маршрута движения общественным транспортом от начальной и до конечной точки с учетом маршрутов, расписаний движения маршрутов общественного транспорта, а также в дорожной ситуации и плотности транспортного потоков;

7. Оптимизацию маршрутов движения транспортных средств с учетом актуальности состояния дорожного движения и динамики изменения транспортных заторов.

В настоящее время в РФ ведется разработка и внедрение интеллектуальных транспортных систем различного масштаба, однако назрела необходимость создания ИТС нового поколения, соответствующей сценарию инновационного развития, направление которому задано транспортной стратегией развития РФ до 2030 года.

Создание Российской Ассоциации ИТС – наиболее очевидный путь развития, учитывая высокие темпы развития инновационных технологий и насущную потребность государства в более эффективном использовании транспортного ресурса при одновременном уменьшении последствий автомобилизации и уменьшении людских потерь.

Понятие интеллектуальной транспортной системы по определению включает в себя:

  • моделирование транспортных систем;
  • регулирование транспортных потоков.
В интеллектуальных транспортных системах (ИТС) соприкасается индустрия автотранспорта и индустрия информационных технологий. Основными целями ИТС являются:
  • информативность и безопасность;
  • переход на качественно новый уровень информационного взаимодействия всех людей, участвующих в дорожном движении.
Это не значит, что для внедрения ИТС достаточно установить технические средства, обеспечивающие транспортное моделирование и регулирование транспортных потоков – гораздо важнее определить цели, для которых все это делается. Поэтому мы рассмотрим не технические средства, а задачи, которые они должны выполнять.

Что должна делать ИТС

Как и любая автоматизированная система управления, ИТС должна:
  • собирать информацию об управляемом объекте, то есть о транспортных потоках;
  • анализировать полученную информацию;
  • оказывать на управляемый объект воздействие прямым или косвенным путем.
Откуда брать информацию? От установленных на дорогах датчиков и детекторов. Что нужно для проведения анализа? Нужна некая модель, заложенная в систему, определяемая задачами, поставленными перед ИТС, к которой вся система должна стремиться.

Моделирование транспорта

Модель в системе транспорта может быть математической, учитывающей законы движения транспорта в виде уравнений и формул, или имитационной, имитирующей поведение водителей, движение транспортных средств, работу светофоров. Практически оба вида моделей используются в виде какой-то смеси.

Математику моделирования используют в основном макро-модели, работающие на уровне страны, региона, города и оценивающие пропускную способность улиц, использование автомобилей населением и другие глобальные параметры. Такие модели просчитывают реакцию на перекрытие улиц, достаточность пропускной способности магистралей.

Микро-модель, рассматривающая отдельный перекресток или транспортную развязку, учитывает количество полос движения, наличие спусков и подъемов, мощность двигателей, правила движения. Если на вход такой модели подать данные из макро-модели о количестве проходящих в данный момент автомобилей, трамваев и т.д., о соблюдении водителями правил движения и парковки, микроуровень достаточно точно будет имитировать реальный транспортный поток.

Создав транспортную модель, можно проводить эксперименты, проверяя, как повлияет на движение машин установка или перестройка светофора, организация одностороннего движения, запрет поворотов. Можно оценить изменения при проведении спортивных соревнований, при строительстве торгового центра или жилого микрорайона. Поддерживать такую модель в рабочем состоянии непросто – в нее надо вводить все изменения дорожной обстановки. Зато выгода ее для транспортного хозяйства города несомненна.

Когда необходима ИТС

Большинство проблем движения транспорта по улицам города удается решить обычными средствами организации движения. А вот если их недостаточно, ИТС становиться необходимой.

Наиболее часто ИТС представлена «умными светофорами» с координированным управлением и информационными цифровыми табло перед развилками. К информационным средствам относятся и Интернет-сервисы вроде Яндекс-пробок, навигационные сервисы для водителей. По сути они тоже являются частью ИТС.

Но в полной мере ИТС начинает действовать, когда объединенные в общую сеть управления светофоры не просто управляются из центрального офиса, а подчиняются компьютеру, в который заложен специальный алгоритм. Транспортная модель позволяет определить параметры, которые необходимо ввести в работу светофоров для того, чтобы движению по улицам создавалось как можно меньше помех.

Модель должна включать в себя все установленные на улицах элементы ИТС, а ее алгоритм должен учитывать реакцию водителей на подаваемые им сигналы. Так, если на табло высвечена рекомендация об изменении маршрута, то 20% водителей ее проигнорируют и поедут прежним путем, что повлияет на транспортные потоки.

Модели могут рассматривать сложные управляющие сценарии, быстро реагировать на реальное изменение дорожной обстановки, разрабатывать автоматически новые сценарии, лучше прежних приводящие к конечной цели. А цель эта – отсутствие пробок на улицах и свободное движение всех видов транспорта.

Так что понятие ИТС не ограничивается следящим оборудованием на столбах и управляемыми с общего пульта светофорами. Подлинный интеллект системы – это управляющие алгоритмы, моделирующие транспортные ситуации, а также процесс их разработки, отладки и внедрения.

К 2013 году в Москве должна появиться интеллектуальная транспортная система (ИТС). За 210 миллионов долларов в ее пилотный проект должны войти единый диспетчерский центр, умные светофоры, уличные табло с информацией о пробках и объездных путях. ГЛОНАСС станет базовой навигационной системой. Мировые пионеры в индустрии ИТС - Корея, Сингапур и Япония, отдельные составляющие таких систем встречаются в Бостоне, Нью-Йорке, Лос-Анджелесе, Брисбене и Франкфурте. The Village проанализировал иностранный опыт и составил универсальный список обязательных элементов умной транспортной системы.


ПАССАЖИРАМ И ПЕШЕХОДАМ


В корейском Пусане центр управления транспортом оперирует терминалом автобусной информации. Он передает информацию на остановки (U-Shelter), где пассажиры могут узнать, почему маршрут задерживается. Терминал связан непосредственно с каждым автобусом. Если интерактивный экран на остановке не работает, то можно позвонить на горячую линию. В Сеуле работает точно такая же система, корейцы даже создали бесплатное автобусное приложение для iPhone. В английском Лестере динамическими табло с информацией о задержках автобусов оборудованы 22 маршрута и 250 машин. Информационного экрана на остановках нет, но можно отправить СМС-запрос за 25 пенсов и узнать, когда будет транспорт.

Единая карта оплаты проезда в Гонконге называется Octopus, в корейских городах Сеуле и Пусане - T-Money. С помощью таких карт можно оплачивать не только проезд на всех видах общественного транспорта, но и парковку, мелкие покупки в супермаркетах и билеты в кино. У проездного во Франкфурте-на-Майне нет такого набора возможностей, но он позволяет пересаживаться с электрички на метро и трамвай.

В Сингапуре на зебрах зелёный свет включается нажатием кнопки. Причём пожилой человек или инвалид может приложить к специальному считывателю свою смарт-карту, и у него будет больше времени для перехода на другую сторону улицы.

В Гонконге на нескольких дисках можно приобрести специальную электронную программу, которая содержит интерактивную карту дорог (Road Network Data) со всеми уличными знаками и спецсигналами (Digitized Traffic Aids Drawings) и данными по статистике пробок (Traffic Census Data). Для курьерских компаний Гонконга эта программа зачастую нужнее, чем бухгалтерское ПО. Обновления выходят регулярно.

ВОДИТЕЛЯМ


Систему автомобильной информации и связи (VICS) специалисты называют основой любой интеллектуальной транспортной системы. В Токио придорожные передатчики и маяки для неё установили ещё в 1995 году. Тогда же ведущие автопроизводители Японии стали делать навигаторы для машин с поддержкой VICS, и уже через несколько лет вся страна оказалась охвачена динамической информационной сетью. С её помощью всегда можно получить через GPS данные о загруженности дорог и возможных объездных путях.

По радиоканалам дорожных сообщений в Сингапуре и Сеуле регулярно передают сводки о загруженности ключевых участков и развязок. В час пик выпуски учащаются. Таких каналов может быть несколько: в Сингапуре работает четыре, а в Сеуле это официальное государственное радио.

Посетив многофункциональный транспортный портал корейского Инчхона, можно оценить ситуацию на дорогах и посмотреть трансляции с уличных вебкамер. Транспортная компания также предлагает интерактивную карту дорог - мини-копию диспетчерского центра. За движением транспорта в городе можно также наблюдать онлайн в Гонконге и Сингапуре.

Планировщик поездок в Сингапуре базируется на такси, потому что все машины имеют GPS-датчики, передающие информацию о перемещениях в диспетчерскую. Далее вычисляется средняя скорость движения по основным дорогам, чтобы постоянно корректировать данные планировщика, к которому можно обратиться и по телефону. Подобная система также работает во Франкфурте, но опирается в основном на веб-портал.

Дорожные знаки на светодиодах лучше видно, плюс они экономят электричество. Знаки, как и все внешние устройства ИТС, подключены к запасным генераторам и в случае коллапса продолжают работать. В гонконгской системе разные индикаторы включаются в разное время суток и в зависимости от загруженности соответствующего участка дороги. 27 светящихся табло в Нью-Йорке работают на транспортном узле аэропорта Ла Гуардия.

Система помощи при парковке в австралийском городе Брисбене - это мониторы с информацией о свободных местах, одновременно на таком экране высвечивается 6–7 адресов ближайших парковок. Центральная компьютерная система связана с ними через Wi-Fi.

Многополосное шоссе Gateway Motorway проходит через австралийский Брисбен и ведет на северо-восток, к аэропорту и на побережье штата Квинсленд. Здесь скапливались многокилометровые пробки. Дорогу решили сделать платной, но скопление машин на пунктах сбора денег только усугубило ситуацию. Автомобили выстраивались в гигантские очереди. В 2007 году на шоссе установили камеры, которые фотографируют номер машины - плата за проезд списывается с кредитной карты её владельца. Также запустили сайт , где каждый может проверить баланс и настроить подходящий режим оплаты.

ВЛАСТЯМ


С помощью камер J-Eye, установленных в Сингапуре, можно отслеживать пробки, а также неправильно припаркованные автомобили. В январе этого года за дорогами наблюдало более трёхсот таких камер с высоким качеством картинки и 1 453 обычных камер безопасности. Эвакуаторы прибывают на места аварий в среднем за 15 минут.

Система управления светофорами регулирует транспортные и пешеходные светофоры. На перекрёстках и развязках проложенные под асфальтом сенсорные провода определяют примерное число машин, скопившихся на данном направлении, и зелёный свет горит дольше для той магистрали, на которой нагрузка сейчас больше. В Гонконге из нескольких близко расположенных пересечений дорог часто делают одну «зелёную улицу», чтобы поток, свободно пройдя один перекрёсток, не задерживался на соседнем. В 2005 году компьютеризованные светофоры Лос-Анджелеса стали на поворотах первыми пропускать автобусы, в результате скорость езды автобусов по городу возросла на четверть.

Противопожарные датчики и детекторы загрязнения воздуха чаще всего необходимы в тоннелях, где возгорания и технические неполадки сложно засечь с камер наблюдения и где они представляют наибольшую опасность. Десятиполосный Большой бостонский тоннель - длинный подземный отрезок шоссе I-93, проходящий прямо под центром города - располагает несколькими десятками таких устройств.

Исследования, направленные на создание и внедрение в практику отечественного автотранспортного комплекса высокоэффективных телематических и интеллектуальных транспортных систем, являются одним из важных направлений научной деятельности НИИАТ. Руководство этим направлением возложено на первого заместителя генерального директора НИИАТ по научной работе к. т. н. Комарова В. В.

Некоторые из полученных результатов представлены в монографии В. В. Комарова и С. А. Гарагана «Архитектура и стандартизация телематических и интеллектуальных транспортных систем. Зарубежный опыт и отечественная практика» М.: НТБ «Энергия», 2012, 352 стр. Книгу можно приобрести в разделе «Интернет-магазин».

Ключевой научной проблемой развития указанного класса систем в отечественной практике является разработка методологических основ формирования их рационального облика.

Методологические основы формирования рационального облика телематических
и интеллектуальных транспортных систем

Информатизация производственных, экономических и социальных процессов в последние десятилетия развивается чрезвычайно высокими темпами, позволяющими говорить об информационной революции. Не остался в стороне от нее и автотранспортный комплекс, где одним из основных направлений информатизации стало создание и внедрение телематических и интеллектуальных транспортных систем.

Под телематической транспортной системой (ТТС) будем понимать информационную систему, обеспечивающую автоматизированный сбор, обработку, передачу и представление потребителям данных о местоположении и состоянии транспортных средств, а также информации, получаемой на основе этих данных, в целях эффективного и безопасного использования транспортных средств различного назначения и принадлежности .

Интеллектуальная транспортная система (ИТС) - это телематическая транспортная система, обеспечивающая реализацию функций высокой сложности по обработке информации и выработке оптимальных (рациональных) решений и управляющих воздействий . Применительно к зарубежным системам будем использовать традиционный термин «интеллектуальные транспортные системы», хотя не все они соответствуют вышеприведенному определению.

Как следует из приведенных определений, телематические и интеллектуальные транспортные системы являются информационными системами, следовательно, на них распространяются общие теоретические и прикладные результаты, полученные в ходе широкого круга исследований и разработок по проблемам анализа и синтеза систем в рамках таких междисциплинарных научных направлений, как теория систем (см., напр., ), системный анализ (см., напр., ), системология (см., напр., ) и др. Результаты методологического характера представлены в таких работах, как .

В отмечается, что с истемное проектирование является фундаментом для обеспечения функциональной адекватности требованиям всего жизненного цикла сложных систем. От полноты и тщательности системного проектирования зависят эффективность реализации функций системы и степень удовлетворения ожиданий и требований заказчика и пользователей. В последовательности выработки и подготовки к реализации этих требований выделяются три крупных этапа:

— обследование, системный анализ существующей системы и выявление ее недостатков;

Обобщение результатов системного анализа и создание предварительной концепции новой или модернизированной системы и ее программных средств;

Разработка проекта системы, определяющего и конкретизирующего цель, назначение и методы ее дальнейшего детального проектирования и всего жизненного цикла.

На этих этапах при относительно небольших затратах должна определяться экономическая эффективность и рентабельность всех последующих больших затрат ресурсов в жизненном цикле системы и могут быть предотвращены значительные потери ресурсов вследствие плохого планирования и неопределенностей при реализации проекта. Системное проектирование способно остановить нерентабельное развитие проектов систем и избежать крупных затрат заказчикам и разработчикам. В то же время на базе рекомендуемых при проектировании методов, инструментальных средств и стандартов может и должен быть подготовлен и обеспечен длительный, эффективный жизненный цикл и совершенствование множества версий высококачественных систем и их компонентов при реализации на различных аппаратных и операционных платформах. Конечный результат системного проектирования должен также положительно отражаться на системах обеспечения качества, безопасности и защиты, на рационально организованных коллективах квалифицированных специалистов, способных обеспечить весь жизненный цикл системы .

Рассмотрим первые два из перечисленных этапов, имея в виду, что разработка проекта системы в значительной степени определяется ее обликом, формируемым на этапе создания предварительной концепции.

Основным недостатком существующей системы , т. е. автотранспортного комплекса, является недостаточное соответствие показателей качества (эффективности, безопасности, экологичности, удобства для пользователей) современным требованиям при наличии возможности улучшения этих показателей за счет создания и внедрения телематических и, в частности, интеллектуальных транспортных систем.

Цель создания ТТС (ИТС) состоит в повышении показателей качества автотранспортного комплекса с помощью телематических средств. Рассматривая каждый из показателей отдельно, можно отметить различный характер их влияния на потребности общества и экономики (рис. 1, табл. 1). В таблице жирным шрифтом выделено прямое влияние, обычным – опосредованное.

Таблица 1 – Влияние целей создания ТТС (ИТС) на потребности общества и экономики.

Цель

Социум

Экономика

Повышение эффективности автотранспортного комплекса

Рост благосостояния людей за счет повышения эффективности экономики

Повышение эффективности экономики в целом

Повышение безопасности

Снижение количества погибших и пострадавших в ДТП, числа правонарушений на автомобильном транспорте, задержек дорожного движения вследствие ДТП

Затрат на лечение пострадавших и ликвидацию последствий ДТП, потерь от правонарушений, задержек дорожного движения

Повышение экологичности

Улучшение условий жизни людей, снижение заболеваемости

Снижение потерь трудовых ресурсов , затрат на лечение заболевших

Повышение удобства использования

Снижение потерь времени и сил пользователей автомобильного транспорта на поездки и перевозки, повышение удовлетворения транспортными услугами

Повышение спроса на транспортные средства, поездки и перевозки, сокращение затрат времени на транспортные процессы

Рисунок 1. – Характер в лияния ТТС (ИТС) на потребности общества и экономики.

В качестве предварительных итогов обследования и обобщения результатов системного анализа можно использовать верхний уровень классификации проблем, решаемых ТТС (ИТС) в трактовках, используемых ИСО, США и Европейским Союзом. Эти проблемы представлены в табл. 2, где показано примерное соответствие между классами, выделенными в различных источниках. Отсутствие прямого соответствия не следует понимать как отказ от включения соответствующих проблем в сферу действия ТТС (ИТС), оно является следствием различных подходов к классификации. На более низких уровнях классификации в подавляющем большинстве случаев такое соответствие наблюдается.

Таблица 2 – Верхний уровень классификации проблем, решаемых ТТС (ИТС).

Сервисный домен по ГОСТ Р ИСО 14813-1 - 2011

Группа пользовательских сервисов ( User Service Bundle ) Национальной архитектуры ИТС США

Фрагмент ИТС ( Part of ITS ) в Европейской рамочной архитектуре ИТС

Информирование участников движения

Помощь путешественнику (Traveller Assistance)

Управление дорожным движением и действия по отношению к его участникам

Управление перемещениями и дорожным движением (Travel and Traffic Management )

Управление дорожным движением (Traffic Management)

Конструкция транспортных средств

Усовершенствованные системы активной безопасности (Advanced Vehicle Safety Systems )

Системы на транспортном средстве (In-Vehicle Systems)

Коммерческие перевозки

Деятельность грузового транспорта (Commercial Vehicle Operations )

Управление грузами и грузоперевозками (Freight and Fleet Management)

Общественный транспорт

Управление общественным транспортом (Public Transportation Management )

Управление общественным транспортом (Public Transport Management)

Чрезвычайные ситуации

Электронные платежи на транспорте

Электронные платежи (Electronic Payment )

Сбор электронных платежей (Electronic Fee Collection)

Персональная безопасность, связанная с дорожным транс портом

Погодные условия и состояние окружающей среды

Катастрофы и чрезвычайные ситуации

Управление в чрезвычайных ситуациях (Emergency Management )

Оповещение и реакция на чрезвычайные ситуации (Emergency Notification and Response)

Национальная безопасность

Правоприменение (Law Enforcement)

Управление данными ИТС

Управление информацией (Information Management )

Управление дорожными и строительными работами (Maintenance and Construction Management )

Поддержка кооперативных систем (Support for Cooperative Systems)

Исходя из представленных в таблице данных, можно выдвинуть гипотезы о том, что рациональными могут быть следующие предварительные концепции системы:

- совокупность автономных систем, каждая из которых предназначена для решения одной или нескольких из вышеуказанных проблем либо их компонентов (проблем более низкого уровня);

- универсальная многофункциональная система, обеспечивающая решение всего круга проблем.

Представляется целесообразным сравнить эти концепции с точки зрения их эффективности и затрат, потребных для их создания и эксплуатации.

Для этого рассмотрим общую функциональную структуру информационной системы (рис. 2). Под функциональной структурой понимают совокупность функций (задач) системы и информационных связей между ними.

Рисунок 2. – О бщая функциональная структура информационной системы.

В общем случае информационная система предназначена для получения определенной информации о некоторой предметной области, обработки этой информации по заданным законам и представления результатов обработки в необходимом виде потребителям. Соответственно ее функциональная структура должна включать процессы получения необходимой информации о предметной области, передачи полученной информации на объект (объекты), где осуществляется обработка, собственно обработки информации, передачи полученных результатов на объект (объекты), где находятся потребители информации, и представления полученной информации потребителям.

Частным случаем информационной системы является автоматизированная система управления (рис. 3). При этом роль предметной области, о которой система получает информацию, играет управляемый объект. Полученная информация передается для обработки, которая в общем случае включает решение двух крупных задач: оценки состояния управляемого объекта, возможно, с учетом поступающих извне данных о его требуемом состоянии, и выработки управляющих воздействий, которая также может осуществляться с использованием внешних данных. Параметры выработанных управляющих воздействий передаются на исполнительные органы, которые непосредственно формируют воздействия на управляемый объект.

Рисунок 3. – О бщая функциональная структура автоматизированной системы управления.

Анализ проблем, представленных в таблице 2, и их дальнейшей детализации в и других материалах показывает, что предметные области практически всех проблем включают движение всех транспортных средств (ТС) либо отдельных их категорий на всей территории, обслуживаемой системой. В состав информации, получаемой системой, должны входить местоположение и скорость движения транспортных средств (ТС) и/или параметры транспортных потоков на улично-дорожной сети (УДС), находящейся на этой территории. Отсюда следует, что о бщую функциональную структуру ТТС, предназначенной для решения большинства вышеприведенных проблем, можно представить в виде, показанном на рис. 4.

Она может включать следующие процессы:

- получения информации о местоположении, движении и состоянии отдельных ТС;

- получения информации о транспортных потоках, которая может поступать от датчиков транспорта, средств видеонаблюдения и т. п.;

- получения информации о метеоусловиях на дорогах;

- передачи полученной информации для дальнейшей обработки;

- обработки информации;

- передачи результатов обработки информации на бортовые, индивидуальные (например, персональные компьютеры и переносные коммуникационные устройства) и групповые (например, светофоры, изменяемые дорожные знаки и информационные табло) средства представления информации;

- представления информации бортовыми средствами, размещенными на ТС;

- представления информации групповыми средствами для участников дорожного движения и пользователей ТС;

- представления информации иным пользователям, в том числе на средства отображения индивидуального пользования, включая переносные устройства.

Минимальная функциональная структура должна включать хотя бы один из процессов получения информации, соответствующий процесс передачи полученной информации для обработки и собственно процесс обработки информации.


Рисунок 4. – О бщая функциональная структура


Вышеописанной функциональной структуре ТТС соответствует физическая структура системы, представленная на рис. 5. Физическая структура отражает состав физических компонентов системы и связи между ними. Применительно к ТТС она включает следующие элементы:

- подсистему сбора информации, в которую могут входить бортовые автомобильные навигационно-информационные комплексы (БАНИК), внебортовые средства сбора информации (датчики транспорта, системы фотовидеофиксации, видеонаблюдения, видеоаналитики), средства сбора данных о метеоусловиях;

- комплекс средств управления дорожным движением и информирования пользователей ТС;

- подсистему обмена информацией с БАНИК;

- подсистему передачи данных с внебортовых средств сбора информации о транспортных потоках;

- подсистему передачи данных о метеоусловиях;

- подсистему передачи данных на средства управления дорожным движением и информирования пользователей ТС;

- подсистему обработки информации;

- средства представления информации пользователям ТТС и получения данных для выработки управляющих воздействий.


Рисунок 5. – О бщая физическая структура телематической транспортной системы.


Бортовой автомобильный навигационно-информационный комплекс включает (рис. 6) бортовой навигационно-информационный терминал, в состав которого входят приемник сигналов глобальных навигационных спутниковых систем, вычислительное устройство, устройство связи с внешними абонентами, пользовательский интерфейс и, кроме того, может содержать следующие элементы:

- датчиковый комплекс, в состав которого могут входить датчики состояния ТС, груза, пассажиропотока, оборудования, смонтированного на ТС, идентификации водителя, система автоматического определения факта аварии и др.;

- комплекс исполнительных элементов, которые могут обеспечивать по команде от оператора системы, например, такие функции, как блокировка возможности движения ТС (например, в случаях отклонения от маршрута ТС, перевозящего опасные грузы, нарушения режима работы и отдыха водителей либо угона ТС), включение аварийной сигнализации (при получении от ТС сигнала аварии и невозможности установления связи с водителем), разблокировка либо открытие дверей при получении сигнала аварии и т. д.


Рисунок 6. – Общая структура бортового автомобильного навигационно-информационного комплекса (БАНИК).


Возвращаясь к рассмотрению гипотез о рациональных предварительных концепциях (обликах) системы, можно отметить, что создание автономных систем узкого функционального назначения предлагается в ряде российских национальных стандартов и проектов таких стандартов . Пример одной из таких систем – системы диспетчерского управления транспортом по вывозу твердых бытовых отходов – показан на рис. 7.

При этом, например, в США с 1991 г. ведется разработка и поддержание в актуальном состоянии Национальной архитектуры ИТС США, которая представляет собой комплекс документов, включающий 21 книгу общим объемом около 4800 страниц. Текущая версия 7.0 выпущена 29.01.2012 г. Общее описание архитектуры приведено в документе . Упрощенная логическая архитектура верхнего уровня ИТС США показана на рис. 8.

В Европейском Союзе разработана Европейская рамочная архитектура ИТС, описание версии 4.1 которой состоит из 21 книги общим объемом более 1800 страниц (см. ) .

Указанные примеры зарубежных архитектур ИТС охватывают все проблемы, приведенные в соответствующих столбцах табл. 2, т. е. соответствуют гипотезе рациональности облика ТТС как универсальной многофункциональной системы, обеспечивающей решение всего круга проблем.

Рисунок 7. - Иерархическая архитектура системы диспетчерского управления транспортом по вывозу твердых бытовых отходов (ГОСТ Р 54029-2010).


Рисунок 8. - Упрощенная логическая архитектура верхнего уровня ИТС США.


Проведем сравнительную оценку описанных концепций создания ТТС.

В результате реализации концепции создания изолированных узкофункциональных систем возникает ситуация, которая в информатике именуется лоскутной автоматизацией , "лоскутной" стратегией , а ее результат - «зоопарком» программ .

На рис. 9 показан возможный результат ее применения к тяжелым грузовым ТС, для которых установлен или ожидается к установлению нормативными актами ряд требований по оснащению телематическими средствами.

Рисунок 9. - Возможная конфигурация разрабатываемых телематических систем.

Как видно из рисунка, в случае применения изолированных узкофункциональных систем возникает необходимость оснащения каждого ТС бортовыми навигационно-информационными комплексами в к количестве, равном числу систем, обслуживающих данное ТС. Если стоимость одного комплекса составляет 15-30 тыс. руб., то затраты на оснащение 100 тысяч ТС одним комплексом достигают 1,5 – 3 млрд. руб., а пятью комплексами - 7,5 – 15 млрд. руб. Оценивая общий российский парк грузовых автомобилей, автобусов и легковых автомобилей, не находящихся в пользовании граждан, в 8 млн. единиц, легко видеть, что оснащение каждого из этих ТС одним бортовым комплексом потребует суммарных затрат в 120 – 240 млрд. руб. Кроме того, каждый из бортовых комплексов генерирует трафик обмена данными, который также должен оплачиваться.

Каждая из изолированных систем включает подсистемы обмена (передачи) данными и их обработки. Затраты на их создание и эксплуатацию увеличиваются пропорционально количеству таких систем. Необходимо также иметь в виду возможную перспективу расширения круга задач, решаемых ТТС. В рамках рассматриваемой концепции это потребует создания новых узкофункциональных систем и дополнительных крупных затрат.

В случае реализации концепции универсальной многофункциональной системы, обеспечивающей решение всего круга проблем (рис. 10), достаточно оснастить каждое ТС единственным бортовым навигационно-информационным комплексом, создать на каждой территории обслуживания единственную систему обмена данными, единственный центр обработки сообщений ТС и единственный многофункциональный центр контроля и управления. Расширение круга задач, решаемых системой, обеспечивается возможностями ее масштабирования, т. е. придания новых функций БАНИК и центрам обработки сообщений и контроля и управления.

Рисунок 10. - Возможная конфигурация универсальной многофункциональной телематической транспортной системы.

Кроме того, важнейшим преимуществом универсальной системы перед «зоопарком» узкофункциональных является то, что универсальная система позволяет интегрировать данные о движении всех ТС в информацию о реальных транспортных потоках, на основе которой возможно эффективное управление дорожным движением, обеспечивающее достижение целей создания ТТС.

Еще одним направлением сокращения затрат на создание телематических транспортных систем является разработка общей архитектуры, на базе которой возможно формирование облика конкретных реализаций системы и последовательное наращивание их функциональных возможностей при рациональном использовании имеющихся ресурсов. По оценкам европейских специалистов, использование общей архитектуры обеспечивает почти 80 % объема работ по созданию архитектуры конкретной системы .

Таким образом, концепция универсальной многофункциональной ТТС характеризуется во много раз более низкими затратами, чем альтернативная. Тем самым подтверждается рациональность подходов к построению ТТС, используемых за рубежом, в частности, в США и ЕС.

Для создания универсальной многофункциональной ТТС необходимо разработать универсальную структуру сообщения БАНИК о местоположении, движении и состоянии ТС, которое обеспечивает решение всех задач ТТС, кроме экстренного реагирования на аварии, для которой используется специальный состав и формат сообщения. В табл. 3 приведен возможный состав такого сообщения.

Таблица 3 – Возможный состав унифицированного сообщения о местоположении, движении и состоянии ТС

Группа данных

Изменчивость

Идентификационные данные ТС

Постоянные/постоянные для сеанса взаимодействия с ТТС

Идентификационные данные водителя

Постоянные для водителя

Идентификационные данные груза

ТС, предназначенные для перевозки грузов, которые могут иметь носители идентификационных данных

Классификационные признаки ТС

Постоянные, постоянные для рейса

Классификационные признаки груза

Постоянные для каждого места груза

Грузовые ТС

Данные о местоположении и скорости ТС

Переменные

Данные о состоянии ТС

Переменные

ТС, для которых нормативными документами либо решением владельца установлена необходимость контроля состояния

Данные о состоянии водителя

Переменные

ТС, для которых предусмотрен контроль режима движения, труда, отдыха и состояния водителей

Данные о состоянии груза

Переменные

ТС, предназначенные для перевозки грузов, которые подлежат контролю их состояния

Данные о количестве пассажиров

Переменные

Средства общественного транспорта

Данные о состоянии оборудования, смонтированного на ТС

Переменные

ТС, на которых смонтировано оборудование, которое подлежит контролю его состояния

Дадим краткую характеристику групп данных, представленных в таблице.

Идентификационные данные (ИД) ТС определяют конкретное транспортное средство. Они могут задаваться различными способами. Для ТС, применительно к которым установлены нормативные требования об их телематическом контроле (средства общественного транспорта, ТС, перевозящие опасные грузы, тяжеловесные ТС и т. д.) целесообразно устанавливать постоянные ИД. Такие идентификационные данные могут устанавливаться и для иных ТС по желанию их владельцев. Это позволяет накапливать и анализировать статистику о движении и изменениях состояния ТС, которая может быть полезной для владельцев как коммерческих, так и личных транспортных средств.

Если же владелец транспортного средства не желает, чтобы в системе накапливались данные об его ТС, таким ТС может быть предоставлена возможность присвоения новых ИД при каждом входе в связь с системой. Тем самым может быть ослаблено негативное отношение некоторых лиц к ТТС, которые рассматриваются этими лицами как средство «тотальной слежки» за их передвижениями.

В целях предотвращения противоправного использования информации, циркулирующей в ТТС, целесообразно принять меры по строгому ограничению доступа к ИД в форме, используемой при радиообмене ТС с элементами ТТС. Идентификационные данные не должны сообщаться владельцу ТС, а также оперативному персоналу ТТС.

В состав этой группы данных могут также входить ИД прицепов/полуприцепов.

Идентификационные данные водителя предназначены для решения задачи контроля режима движения, труда, отдыха и состояния водителей. Технология такого контроля достаточно детально разработана применительно к тахографам и может быть принята за основу при решении указанной задачи телематическими средствами. В перспективе эта технология может быть усовершенствована, например, путем идентификации водителей по автоматически формируемому портрету, а также внедрения технических средств контроля физического состояния водителя.

Идентификационные данные груза используются при организации и управлении перевозками грузов, оснащенных носителями идентификационных данных, либо перевозимых в таре, имеющей такое оснащение.

Классификационные признаки ТС включают признаки, позволяющие установить класс габаритов и иных технических характеристик ТС, а также сведения о принадлежности ТС к классификационным группам, для которых установлены специальные требования к телематическому контролю. Часть этих признаков может устанавливаться для каждого рейса (например, в зависимости от характера перевозимого груза, наличия пассажиров либо выполнения рейса порожняком).

Классификационные признаки груза могут использоваться для грузов, для которых установлены специальные требования к их перевозке (например, опасные либо скоропортящиеся).

Данные о местоположении и скорости ТС включают его координаты, модуль и направление вектора скорости движения, а также момент времени, в который были определены эти параметры. Они необходимы для решения задач управления дорожным движением, контроля за маршрутами движения ТС, для которых установлены специальные требования, и многих других задач.

Данные о состоянии ТС могут включать широкий круг параметров, зависящих от категории ТС. Например, сведения о давлении в шинах могут использоваться для контроля безопасности движения, данные об уровне топлива в баке – для предотвращения хищений и контроля заправляемых объемов топлива, данные о режиме функционирования стеклоочистителей – для оценки метеоусловий на дороге и т. д.

Данные о состоянии груза могут использоваться для отслеживания состояния грузов, требующих специальных условий перевозки (опасных, скоропортящихся и др.).

Данные о количестве пассажиров , перевозимых средствами общественного транспорта, целесообразно использовать в процессе диспетчерского управления, например, для направления на маршруты дополнительных ТС либо снятия их с маршрутов.

Данные о состоянии оборудования, смонтированного на ТС , необходимы для контроля и учета объемов работ, выполняемых с помощью этого оборудования (например, дорожных, строительных, сельскохозяйственных и т. д.).

Представленный состав унифицированного сообщения, по мнению авторов, охватывает все группы данных, которые могут передаваться с борта ТС для использования в универсальной многофункциональной ТТС. Для представления сообщения целесообразно использовать язык XML , широко применяемый в современных информационных системах. Его использование в ИТС регламентировано стандартом ISO 24531:2007 .

Использование описанного состава унифицированного сообщения обеспечивает унификацию компонентов ТТС и ИТС (БАНИК, подсистем обмена и обработки информации), алгоритмов обработки данных, географическую непрерывность телематического обслуживания ТС и позволяет сократить затраты на создание и эксплуатацию систем.

Таким образом, в настоящей статье описаны методологические основы формирования рационального облика телематических и интеллектуальных транспортных систем как одного их классов информационно-управляющих систем, описана их рациональная структура, подобная используемым в США и ЕС, показаны преимущества такой структуры и предложен состав унифицированного сообщения о местоположении, движении и состоянии ТС, обеспечивающий эффективную разработку и функционирование ТТС и ИТС.

1. В. В. Комаров, С. А. Гараган. Архитектура и стандартизация телематических и интеллектуальных транспортных систем. Зарубежный опыт и отечественная практика. М.: НТБ «Энергия», 2012.

2. Теория систем: Учеб. пособие/В.Н. Волкова, А.А. Денисов. - М.: Высш. шк., 2006.

3. Системный анализ. Учеб. для вузов/А.В. Антонов. - М.: Высш. шк., 2004.

4. Проблемы системологии (проблемы теории сложных систем). М., «Сов. радио», 1976.

5. Могилевский В. Д. Методология систем: вербальный подход/Отд-ние экон. РАН; науч.-ред. совет изд-ва "Экономика". - М.: ОАО "Издательство "Экономика", 1999.

6. Новиков А.М., Новиков Д.А. Методология.– М.: СИНТЕГ, 2007.

7. Липаев, В.В. Программная инженерия. Методологические основы. М.: ТЕИС, 2006.

8. ГОСТ Р ИСО 14813-1 - 2011 «Интеллектуальные транспортные системы. Схема построения архитектуры интеллектуальных транспортных систем. Часть 1. Сервисные домены в области интеллектуальных транспортных систем, сервисные группы и сервисы».

9. National Intelligent Transportation System (ITS) Architecture. Executive Summary. Research and Innovation Technology Administration (RITA). US Department of Transportation. Washington D.C. , May 2007.

10. E-FRAME. Extend FRAMEwork architecture for cooperative systems. D15 – FRAME Architecture – Part 1, version V1.0.

11. ГОСТ Р 52456-2005 Глобальная навигационная спутниковая система и глобальная система позиционирования. Приемник индивидуальный для автомобильного транспорта. Технические требования.

12. ГОСТ Р 53703-2009 Системы мониторинга и охраны автотранспортных средств. Общие технические требования и методы испытаний.

13. ГОСТ Р 53860-2010 Глобальная навигационная спутниковая система. Системы диспетчерского управления городским пассажирским транспортом. Требования к архитектуре и функциям.

14. ГОСТ Р 54023-2010 Глобальная навигационная спутниковая система. Система навигационного диспетчерского контроля выполнения государственного заказа на содержание федеральных автомобильных дорог. Назначение, состав и характеристики подсистемы картографического обеспечения.

15. ГОСТ Р 54026-2010 Глобальная навигационная спутниковая система. Системы диспетчерского управления городским наземным пассажирским транспортом. Назначение, состав и характеристики решаемых задач подсистемы информирования пассажиров.

16. ГОСТ Р 54027-2010 Глобальная навигационная спутниковая система. Системы диспетчерского управления грузовым автомобильным транспортом. Требования к архитектуре, функциям и решаемым задачам системы диспетчерского управления перевозками строительных грузов по часовым графикам.

17. ГОСТ Р 54028-2010 Глобальная навигационная спутниковая система. Системы диспетчерского управления междугородними пассажирскими перевозками. Требования к архитектуре, функциям и решаемым задачам.

18. ГОСТ Р 54029-2010 Глобальная навигационная спутниковая система. Системы диспетчерского управления специальным автомобильным транспортом муниципальных служб. Требования к архитектуре, функциям и решаемым задачам системы диспетчерского управления транспортом по вывозу твердых бытовых отходов.

19. ГОСТ Р 54030-2010 Глобальная навигационная спутниковая система. Системы информационного сопровождения и мониторинга городских и пригородных автомобильных перевозок опасных грузов. Требования в архитектуре, функциям и решаемым задачам.

20. Глобальная навигационная спутниковая система. Системы диспетчерского управления автомобильным и городским электрическим транспортом. Системы диспетчерского управления междугородними контейнерными грузовыми автомобильными перевозками. Требования к архитектуре, функциям и решаемым задачам. Проект национального стандарта.

21. Глобальная навигационная спутниковая система. Системы диспетчерского управления автомобильным и городским электрическим транспортом. Системы диспетчерского управления грузовым автомобильным транспортом. Назначение, состав и характеристики бортового навигационно-связного оборудования. Проект национального стандарта.

22. Глобальная навигационная спутниковая система. Системы диспетчерского управления автомобильным и городским электрическим транспортом. Системы диспетчерского управления специальным автомобильным транспортом муниципальных служб. Требования к архитектуре, функциям и решаемым задачам системы диспетчерского управления транспортом по уборке улиц. Проект национального стандарта.

23. Глобальная навигационная спутниковая система. Системы диспетчерского управления автомобильным и городским электрическим транспортом. Системы информационного сопровождения и мониторинга региональных автомобильных перевозок опасных грузов. Требования к архитектуре, функциям и решаемым задачам. Проект национального стандарта.

24. Глобальная навигационная спутниковая система. Системы диспетчерского управления автомобильным и городским электрическим транспортом. Системы диспетчерского управления городским пассажирским транспортом. Назначение, состав и характеристики решаемых задач подсистемы анализа пассажиропотоков. Проект национального стандарта.

25. Глобальная навигационная спутниковая система. Система экстренного реагирования при авариях. Услуга базовая. Проект национального стандарта.

26. Глобальная навигационная спутниковая система. Автомобильная система вызова экстренных оперативных служб. Общие технические требования. Проект национального стандарта.

27. Глобальная навигационная спутниковая система. Система экстренного реагирования при авариях. Протоколы обмена данными автомобильной системы вызова экстренных оперативных служб с инфраструктурой системы экстренного реагирования при авариях. Проект национального стандарта.

28. Глобальная навигационная спутниковая система. Система экстренного реагирования при авариях. Программа и методики испытаний на соответствие требованиям по электромагнитной совместимости, стойкости к климатическим и механическим воздействиям. Проект национального стандарта.

29. Информатика. Базовый курс. 2-е издание / Под ред. С. В. Симоновича. - СПб.: Питер, 2005.

30. Н. Лисин. Лоскутная автоматизация, или как управлять «зоопарком» программ. 19.06.2009. http://www.bytemag.ru/articles/detail.php?ID=14862

31. Ксавьер Гилберт. Мастерство: Менеджмент / Пер. с англ.-М.: (Серия «Мастерство»), 1999.

32. The FRAME Architecture And The ITS Action Plan. Booklet of the E-FRAME Project, June 2011.

33. ISO 24531:2007 Intelligent transport systems -- System architecture, taxonomy and terminology -- Using XML in ITS standards, data registries and data dictionaries.