Исследовательская работа "формула пика". Метод узлов в задаче B5

Формула Пика

Сажина Валерия Андреевна, учащаяся 9 класса МАОУ «СОШ№11» г Усть-Илимск Иркутской области

Руководитель: Губарь Оксана Михайловна, учитель математики высшей квалификационной категории МАОУ «СОШ№11» г Усть-Илимск Иркутской области

2016 год

Введение

При изучении темы геометрии «Площади многоугольников», я решила узнать: существует ли способ нахождения площадей, отличный от тех, которые мы изучали на уроках?

Таким способом является формула Пика. Л. В. Горина в «Материалах для самообразования учащихся» так описывала данную формулу: «Ознакомление с формулой Пика особенно актуально накануне сдачи ЕГЭ и ГИА. С помощью этой формулы можно без проблем решать большой класс задач, предлагаемых на экзаменах, - это задачи на нахождение площади многоугольника, изображённого на клетчатой бумаге. Маленькая формула Пика заменит целый комплект формул, необходимых для решения таких задач. Формула Пика будет работать «одна за всех…»!».

В материалах ЕГЭ мне встретились задачи с практическим содержанием на нахождение площади земельных участков. Я решила проверить, применима ли данная формула для нахождения площади территории школы, микрорайонов города, области. А так же рационально ли ее применение для решения задач.

Объект исследования: формула Пика.

Предмет исследования: рациональность применение формулы Пика при решении задач.

Цель работы: обосновать рациональность использования формулы Пика при решении задач на нахождение площади фигур, изображённых на клетчатой бумаге.

Методы исследования: моделирование, сравнение, обобщение, аналогии, изучение литературных и Интернет-ресурсов, анализ и классификация информации.

Подобрать необходимую литературу, проанализировать и систематизировать полученную информацию;

Рассмотреть различные методы и приёмы решения задач на клетчатой бумаге;

Проверить экспериментальным путем рациональность использования формулы Пика;

Рассмотреть применение данной формулы.

Гипотеза: если применить формулу Пика для нахождения площадей многоугольника, то можно найти площадь территории, а решение задач на клетчатой бумаге будет более рационально.

Основная часть

Теоретическая часть

Клетчатая бумага (точнее - ее узлы), на которой мы часто предпочитаем рисовать и чертить, является одним из важнейших примеров точечной решетки на плоскости. Уже эта простая решетка послужила К. Гауссу отправной точкой для сравнения площади круга с числом точек с целыми координатами, находящихся внутри него. То, что некоторые простые геометрические утверждения о фигурах на плоскости имеют глубокие следствия в арифметических исследованиях, было в явном виде замечено Г. Минковским в 1896 г., когда он впервые для рассмотрения теоретико-числовых проблем привлек геометрические методы .

Нарисуем на клетчатой бумаге какой-нибудь многоугольник (Приложение 1, рисунок 1). Попробуем теперь рассчитать его площадь. Как это сделать? Наверное, проще всего разбить его на прямоугольные треугольники и трапецию, площади которых уже нетрудно вычислить и сложить полученные результаты.

Использованный способ несложен, но очень громоздок, кроме того он годится не для всяких многоугольников. Так следующий многоугольник нельзя разбить на прямоугольные треугольники, так как мы это проделали в предыдущем случае (Приложение 2, рисунок 2). Можно, например, попробовать дополнить его до «хорошего», нужного нам, то есть до такого, площадь которого мы сможем вычислить описанным способом, потом из полученного числа вычесть площади добавленных частей.

Однако оказывается, что есть очень простая формула, позволяющая вычислить площади таких многоугольников с вершинами в узлах квадратной сетки.

Эту формулу открыл австрийский математик Пик Георг Александров (1859 – 1943 г.г.) в 1899 году. Кроме этой формулы Георг Пик открыл теоремы Пика, Пика – Жюлиа, Пика – Невалины, доказал неравенство Шварца – Пика.

Эта формула оставалась незамеченной в течение некоторого времени после того, как Пик её опубликовал, однако в 1949 г. польский математик Гуго Штейнгауз включил теорему в свой знаменитый «Математический калейдоскоп». С этого времени теорема Пика стала широко известна. В Германии формула Пика включена в школьные учебники.

Она является классическим результатом комбинаторной геометрии и геометрии чисел.

Доказательство формулы Пика

Пусть АВСD – прямоугольник с вершинами в узлах и сторонами, идущими по линиям сетки (Приложение 3, рисунок 3).

Обозначим через В - количество узлов, лежащих внутри прямоугольника, а через Г - количество узлов на его границе. Сместим сетку на полклетки вправо и полклетки

вниз. Тогда территорию прямоугольника можно «распределить» между узлами следующим образом: каждый из В узлов «контролирует» целую клетку смещённой сетки, а каждый из Г узлов – 4 граничных не угловых узла – половину клетки, а каждая из угловых точек – четверть клетки. Поэтому площадь прямоугольника S равна

S = В + + 4 · = В + - 1 .

Итак, для прямоугольников с вершинами в узлах и сторонами, идущими по линиям сетки, мы установили формулу S = В + - 1 . Это и есть формула Пика.

Оказывается, эта формула верна не только для прямоугольников, но и для произвольных многоугольников с вершинами в узлах сетки.

Практическая часть

Нахождение площади фигур геометрическим методом и по формуле Пика

Я решила убедиться в том, что формула Пика верна для всех рассмотренных примеров.

Оказывается, что если многоугольник можно разрезать на треугольники с вершинами в узлах сетки, то для него верна формула Пика.

Я рассмотрела некоторые задачи на клетчатой бумаге с клетками размером 1 см1 см и провела сравнительный анализ по решению задач (Таблица№1).

Таблица№1 Решение задач различными способами.

Рисунок

По формуле геометрии

По формуле Пика

Задача №1

S=S пр -(2S 1 +2S 2 )

S пр =4*5=20 см 2

S 1 =(2*1)/2=1 см 2

S 2 =(2*4)/2=4 см 2

S=20-(2*1+2*4)=10 см 2

Ответ :10 см ².

В = 8, Г = 6

S = 8 + 6/2 – 1 = 10 (см²)

Ответ: 10 см².

Задача №2

a=2, h=4

S=a*h=2*4=8 см 2

Ответ : 8 см ².

В = 6, Г = 6

S = 6 + 6/2 – 1 = 8 (см²)

Ответ: 8 см².

Задача №3

S=S кв -(S 1 +2S 2 )

S кв =4 2 =16 см 2

S 1 =(3*3)/2=4,5см 2

S 2 =(1*4)/2=2см 2

S =16-(4,5+2*2)=7.5 см 2

В = 6, Г = 5

S = 6 + 5/2 – 1 = 7,5 (см²)

Ответ: 7,5 см².

Задача №4

S=S пр -(S 1 +S 2+ S 3 )

S пр =4 * 3=12 см 2

S 1 =(3*1)/2=1,5 см 2

S 2 =(1*2)/2=1 см 2

S 3 =(1+3)*1/2=2 см 2

S=12-(1,5+1+2)=7.5 см 2

В = 5, Г = 7

S = 5 + 7/2 – 1 = 7,5 (см²)

Ответ: 7,5 см².

Задача № 5.

S=S пр -(S 1 +S 2+ S 3 )

S пр =6 * 5=30 см 2

S 1 =(2*5)/2=5 см 2

S 2 =(1*6)/2=3 см 2

S 3 =(4*4)/2=8 см 2

S=30-(5+3+8)=14 см 2

Ответ: 14 см²

В = 12, Г = 6

S = 12 + 6/2 – 1 = 14 (см²)

Ответ: 14 см²

Задача №6.

S тр =(4+9)/2*3=19,5 см 2

Ответ: 19,5 см 2

В = 12, Г = 17

S = 12 + 17/2 – 1 = 19,5 (см²)

Ответ: 19,5 см 2

Задача №7. Найдите площадь лесного массива (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м

S= S 1 +S 2+ S 3

S 1 =(800*200)/2=80000 м 2

S 2 =(200*600)/2=60000 м 2

S 3 =(800+600)/2*400=

280000 м 2

S= 80000+60000+240000=

420000м 2

Ответ: 420 000 м²

В = 8, Г = 7. S = 8 + 7/2 – 1 = 10,5 (см²)

1 см² - 200² м²; S = 40000 · 10,5 = 420 000 (м²)

Ответ: 420 000 м²

Задача №8 . Найдите площадь поля (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе

1 см – 200 м.

S = S кв -2(S тр + S трап )

S кв =800 * 800=640000 м 2

S тр =(200*600)/2=60000м 2

S трап =(200+800)/2*200=

100000м 2

S =640000-2(60000+10000)=

320000 м 2

Ответ: 320 000 м²

Решение. Найдём S площадь четырёхугольника, изображённого на клетчатой бумаге по формуле Пика: S = В + - 1

В = 7, Г = 4. S = 7 + 4/2 – 1 = 8 (см²)

1 см² - 200² м²; S = 40000 · 8 = 320 000 (м²)

Ответ: 320 000 м²

Задача №9 . Найдите площадь S сектора, считая стороны квадратных клеток равными 1. В ответе укажите .

Сектор является одной четвертой частью круга и, следовательно, его площадь равна одной четвертой площади круга. Площадь круга равна π R 2 , где R – радиус круга. В нашем случае R =√5 и, следовательно, площадь S сектора равна 5π/4. Откуда S /π=1,25.

Ответ. 1,25.

Г= 5, В= 2, S = В + Г/2 – 1= 2 + 5/2 – 1= 3,5, ≈ 1,11

Ответ. 1,11.

Задача №10. Найдите площадь S кольца, считая стороны квадратных клеток равными 1. В ответе укажите .

Площадь кольца равна разности площадей внешнего и внутреннего кругов. Радиус R внешнего круга равен

2 , радиус r внутреннего круга равен 2. Следовательно, площадь кольца равна 4 и, следовательно, . Ответ:4.

Г= 8, В= 8, S = В + Г/2 – 1= 8 + 8/2 – 1=11, ≈ 3,5

Ответ:3,5

Выводы: Рассмотренные задания аналогичны заданию из вариантов контрольно-измерительных материалов ЕГЭ по математике (задачи №5,6),.

Из рассмотренных решений задач я увидела, что некоторые из них, например задачи № 2,6, легче решить, применяя геометрические формулы, так как высоту и основание можно определить по рисунку. Но в большинстве задач требуется разбиение фигуры на более простые (задача №7) или достраивание до прямоугольника (задачи №1,4,5), квадрата (задачи №3,8).

Из решения задач №9 и №10 я увидела, что применение формулы Пика к фигурам, которые не являются многоугольниками, даёт приближённый результат.

Для того, чтобы проверить рациональность применения формулы Пика, я провела исследование на предмет затраченного времени (Приложение 4, таблица №2).

Вывод: из таблицы и диаграммы (Приложение 4, диаграмма 1) видно, что при решении задач с помощью формулы Пика, времени затрачивается гораздо меньше.

Нахождение площади поверхности пространственных форм

Проверим применимость этой формулы к пространственным формам (Приложение 5, рисунок 4).

Найти площадь полной поверхности прямоугольного параллелепипеда, считая стороны квадратных клеток равными 1.

Это недостаток формулы.

Применение формулы Пика для нахождения площади территории

Решая задачи с практическим содержанием, (задачи №7,8; таблица №1), я решила применить данный способ для нахождения площади территории нашей школы, микрорайонов города Усть-Илимска, Иркутской области.

Ознакомившись с «Проектом границ земельного участка МАОУСОШ№11 г.Усть-Илимска» (Приложение 6),, я нашла площадь территории нашей школы и сравнила с площадью по проекту границ земельного участка (Приложение 9, таблица 3).

Рассмотрев карту правобережной части Усть-Илимска (Приложение 7),, я вычислила площади микрорайонов и сравнила с данными из «Генерального плана г. Усть-Илимска Иркутской области». Результаты представила в таблице (Приложение 9, таблица 4).

Рассмотрев карту Иркутской области (Приложение 7),, я нашла площадь территории и сравнила с данными из Википедии . Результаты представила в таблице (Приложение 9, таблица 5).

Проанализировав результаты, я пришла к выводу: по формуле Пика эти площади можно найти гораздо проще, но результаты приблизительные.

Из проведенных исследований наиболее точное значение я получила при нахождении площади территории школы (Приложение 10, диаграмма 2). Большее расхождение в результатах получилось при нахождении площади Иркутской области (Приложение 10, диаграмма 3). Это связано с тем. Что не все границы области являются сторонами многоугольников, и вершины не являются узловыми точками.

Заключение

В результате моей работы я расширила свои знания о решении задач на клетчатой бумаге, определила для себя классификацию исследуемых задач.

При выполнении работы были решены задачи на нахождение площади многоугольников, изображённых на клетчатой бумаге двумя способами: геометрическим и с помощью формулы Пика.

Анализ решений и эксперимент по определению затраченного времени показал, что применение формулы даёт возможность решать задачи на нахождение площади многоугольника, более рационально. Это позволяет экономить время на ЕГЭ по математике.

Нахождение площади различных фигур, изображённых на клетчатой бумаге, позволило сделать вывод, что использование формулы Пика для вычисления площади кругового сектора и кольца нецелесообразно, так как она даёт приближённый результат, и, что формула Пика не применяется для решения задач в пространстве.

Так же в работе были найдены площади различных территорий по формуле Пика. Можно сделать вывод: использование формулы для нахождения площади различных территорий возможно, но результаты получаются приблизительными.

Выдвинутая мной гипотеза подтвердилась.

Я пришла к выводу, что тема, которая меня заинтересовала, достаточно многогранна, задачи на клетчатой бумаге многообразны, методы и приёмы их решения также разнообразны. Поэтому я решила продолжить работу в этом направлении.

Литература

    Волков С.Д.. Проект границ земельного участка, 2008 г, с. 16.

    Горина Л.В., Математика. Все для учителя, М:Наука, 2013 г.. №3, с. 28.

    Прокопьева В.П., Петров А.Г., Генеральный план города Усть-Илимска Иркутской области, Госстрой России, 2004 г.. с. 65.

    Рисс Е. А. , Жарковская Н. М. , Геометрия клетчатой бумаги. Формула Пика. - Москва, 2009, № 17, с. 24-25.

    Смирнова И. М. ,. Смирнов В. А, Геометрия на клетчатой бумаге. – Москва, Чистые пруды, 2009, с. 120.

    Смирнова И. М. , Смирнов В. А. , Геометрические задачи с практическим содержанием. – Москва, Чистые пруды, 2010, с. 150

    Задачи открытого банка заданий по математике ФИПИ, 2015.

    Карта города Усть-Илимска.

    Карта Иркутской области.

    Википедия.

Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу). Точнее, если S - площадь многоугольника, - число клеток, которые целиком лежат внутри многоугольника, и - число клеток, которые имеют с внутренностью многоугольника хоть одну общую точку.

Будем рассматривать ниже только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги - в таких, где пересекаются линии сетки. Оказывается, что для таких многоугольников можно указать такую формулу:

где - площадь, r - число узлов, которые лежат строго внутри многоугольника.

Эту формулу называют «формула Пика» - по имени математика, открывшего её в 1899 году.

Простые треугольники

Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника. Проделав это, например, для треугольников, изображённых на рисунке 1.34, можно убедиться, что площадь получается всегда равной «полученному» числу - числу вида, где - целое.

Назовём треугольник простым, если ни внутри него, ни на его сторонах нет узлов сетки, за исключением вершин. Все простые треугольники на рис. 1.34 имеют площадь. Мы увидим, что это не случайно.

Задача . Три кузнечика (три точки) в начальный момент времени сидят в трёх вершинах одной клетки, а затем начинают «играть в чехарду»: каждый может прыгнуть через одного из двух других, после чего оказывается в симметричной относительно его точке (рис. 1.35, ясно, что после любого числа таких прыжков кузнечики будут попадать в узлы клетчатой бумаги). В каких тройках точек могут через несколько прыжков оказаться кузнечики?

Назовём треугольник достижимым, если в его вершинах могут одновременно оказаться три кузнечика, которые вначале были в трёх вершинах одной клетки; прыжком будем называть преобразование треугольника, заключающееся в том, что одна из вершин переходит в точку, симметричную относительно любой из двух других вершин (эти две вершины остаются на месте).

Теорема 1 . Следующие три свойства треугольников с вершинами в узлах клетчатой бумаги эквивалентны друг другу:

1) треугольник имеет площадь,

2) треугольник прост,

3) треугольник достижим.

Познакомимся со следующими свойствами простого треугольника, которые и приводят к справедливости данной теоремы.

1. Площадь треугольника при прыжке не меняется.

2. Любой достижимый треугольник имеет площадь.

3. Если достроить простой треугольник АВС до параллелограмма ABCD , то ни внутри, ни на сторонах этого параллелограмма не будет узлов (не считая вершин).

4. Из простого треугольника при прыжке получается простой.

5. Из простого треугольника один из углов - тупой или прямой (причём последний случай возможен только для треугольника, у которого три вершины принадлежат одной клетке, такой простой треугольник - со сторонами 1, 1, будем называть минимальным.)

6. Из любого простого не минимального треугольника можно одним прыжком получить треугольник, у которого наибольшая сторона меньше, чем наибольшая сторона исходного.

7. Любой простой треугольник можно конечным числом прыжков перевести в минимальный.

8. Любой простой треугольник достижим.

9. Любой простой треугольник имеет площадь.

10. Любой треугольник можно разрезать на простые.

11. Площадь любого треугольника равна, причём при любом разрезании его на простые их количество равно m .

12. Любой треугольник площади - простой.

13. Для любых двух узлов А и В решётки, на отрезке между которыми нет других узлов, найдётся узел С такой, что треугольник АВС - простой.

14. Узел С в предыдущем свойстве можно всегда выбрать так, что угол АСВ будет тупым или прямым.

15. Пусть клетчатая плоскость разрезана на равные параллелограммы так, что все узлы являются вершинами параллелограммов. Тогда каждый из треугольников, на которые один из этих параллелограммов разрезается своей диагональю - простой.

16. (Обратное 15). Треугольник АВС - простой тогда и только тогда, когда всевозможные треугольники, полученные из АВС параллельными переносами, переводящими узел А в различные узлы решётки, не накладываются друг на друга.

17. Если решётку - узлы клетчатой бумаги - разбить на четыре подрешётки с клетками (рис. 1.36), то вершины простого треугольника обязательно попадут в три разные подрешётки (все три имеют разные обозначения).

Следующие два свойства дают ответ к задаче о трёх кузнечиках.

18. Три кузнечика могут одновременно попасть в те и только те тройки точек, которые служат вершинами простого треугольника и имеют тот же знак, что и соответствующие вершины начального треугольника.

19. Два кузнечика могут одновременно попасть в те и только те пары узлов соответствующих знаков, на отрезке между которыми нет других узлов.

Триангуляция многоугольника

Мы рассмотрим частный вид многоугольников на клетчатой бумаге, которому в формуле Пика соответствуют значения. Но от этого частного случая можно перейти сразу к самому общему, воспользовавшись теоремой о разрезании на треугольники произвольного многоугольника (клетчатая бумага больше не нужна).

Пусть на плоскости задан некоторый многоугольник и некоторое конечное множество К точек, лежащих внутри многоугольника и на его границе (причём все вершины многоугольника принадлежат множеству К ).

Триангуляцией с вершинами К называется разбиение данного многоугольника на треугольники с вершинами в множестве К такое, что каждая точка из К служит вершиной каждому из тех треугольников триангуляции, которым эта точка принадлежит (то есть точки из К не попадают внутрь или на стороны треугольников, рис. 1.37).

Теорема 2 . а) Любой n -угольник можно разрезать диагоналями на треугольники, причём количество треугольников будет равно n - 2 (это разбиение - триангуляция с вершинами в вершинах n -угольника).

б) Пусть на границе многоугольника отмечено r точек (включая все вершины), внутри - ещё i точек. Тогда существует триангуляция с вершинами в отмеченных точках, причём количество треугольников такой триангуляции будет равно.

Разумеется, а) - частный случай б), когда.

Справедливость этой теоремы следует из следующих утверждений.

1) Из вершины наибольшего угла n -угольника () всегда можно провести диагональ, целиком лежащую внутри многоугольника.

2) Если n -угольник разрезан диагональю на р -угольник и q -угольник, то.

3) Сумма углов n -угольника равна.

4) Любой n -угольник можно разрезать диагоналями на треугольника.

5) Для любого треугольника, внутри и на границе которого отмечены несколько точек (в том числе и все три его вершины), существует триангуляция с вершинами в отмеченных точках.

6) То же самое верно и для любого n -угольника.

7) Число треугольников триангуляции равно, где i и r - количество отмечены несколько точек соответственно внутри и на границе многоугольника. Назовём разбиение n -угольника на несколько многоугольников правильным, если каждая вершина одного из многоугольников разбиения служит вершиной всех других многоугольников разбиения, которым она принадлежит. 8) Если из вершин k -угольников, на которые разбит правильным образом n -угольник, i вершин лежат внутри и r - на границе n -угольника, то количество k -угольников равно

9) Если точек плоскости и отрезков с концами в этих точках образуют многоугольник, правильно разбитый на многоугольников, то (рис. 1.38)

Из теорем 1 и 2 и вытекает формула Пика:

1.5 Теорема Пифагора о сумме площадей квадратов, построенных на катетах прямоугольного треугольника

Теорема . Сумма площадей квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на гипотенузе этого треугольника.Доказательство. Пусть АВС (рис. 1.39) - прямоугольный треугольник, а BDEA , AFGE и BCKH - квадраты, построенные на его катетах и гипотенузе; требуется доказать, что сумма площадей двух первых квадратов равна площади третьего квадрата.

Проведём ВС . Тогда квадрат BCKH разделится на два прямоугольника. Докажем, что прямоугольник BLMH равновелик квадрату BDEA , а прямоугольник LCKM равновелик квадрату AFGC .

Проведём вспомогательные прямые DC и АН . Рассмотрим треугольники DCB и ABH . Треугольник DCB , имеющий основание BD , общее с квадратом BDEA , а высоту СN , равную высоте АВ этого квадрата, равновелик половине квадрата. Треугольник АВН , имеющий основание ВН , общее с прямоугольником BLMH , и высоту АР , равную высоте BL этого прямоугольника, равновелик его половине. Сравнивая эти два треугольника между собой, находим, что у них BD = ВА и ВС = ВН (как стороны квадрата);

Сверх того, DCB = АВН , т. к. каждый из этих углов состоит из общей части - АВС и прямого угла. Значит, треугольники АВН и ВСD равны. Отсюда следует, что прямоугольник BLMN равновелик квадрату BDEA . Точно также доказывается, что прямоугольник LGKM равновелик квадрату AFGC . Отсюда следует, что квадрат ВСКН равновелик сумме квадратов BDEA и AFGC .

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Выполнила ученица МОУ СОШ №7 8 «А» класса Юношева Ксения Преподаватель: Бабина Наталья Алексеевна г. Сальск 2011 год «Формула Пика»

Цели работы: Выяснение существования иной, отличной от школьной программы, формулы нахождения площади решетчатого многоугольника. Области применения искомой формулы.

Введение. Математическое образование, получаемое в общеобразовательных школах, является важнейшим компонентом общего образования и общей культуры современного человека. На данном этапе, школьная система рассчитана на одиннадцатилетнее обучение. Всем учащимся в конце одиннадцатого класса предстоит сдавать Единый Государственный Экзамен, который покажет уровень знаний, полученный во время учебы в школе. Но школьная программа не всегда предоставляет самые рациональные способы решения каких-либо задач. Например, просматривая результаты ЕГЭ 2010 года видно, что многие ученики теряют баллы из-за задания В6. Я задалась целью, как же можно сэкономить время и правильно решить это задание.

Задание В6. На клетчатой бумаге с клетками размером 1 см на 1 см изображены фигуры(см. рисунок). Найдите их площади в квадратных сантиметрах.

Итак, чтобы все-таки решить это задание мне нужно применить формулы нахождения площади, которые мы изучаем в 8классе.Но на это уйдет очень много времени, а мне нужно ответить на поставленный вопрос как можно быстрее, ведь время на экзамене строго ограниченно. Поэтому, проведя исследования, я выяснила, что существует теорема Пика, которая в школьной программе не изучается, но которая поможет мне быстрее справиться с заданием.

Историческая справка. Георг Александр Пик (10 августа, 1859 - 26 июля 1942) был австрийским математиком. Он умер в концлагере Терезин. Сегодня он известен из-за формулы Пика для определения площади решетки полигонов. Он опубликовал свою формулу в статье в 1899 году, она стала популярной, когда Хьюго Штейнгауз включил её в 1969 году в издание математических снимков. Пик учился в Венском университете и защитил кандидатскую в 1880 году. После получения докторской степени он был назначен помощником Эрнеста Маха в Шерльско-Фердинандском университете в Праге. Он стал преподавателем там в 1881 году. Взяв отпуск в университете в 1884 году, стал работать с Феликсом Клейном в Лейпцигском университете. Он оставался в Праге до своей отставки в 1927 году, а за тем вернулся в Вену. Пик возглавлял комитет в(тогда) немецком университете Праги, который назначил Альберта Эйнштейна профессором кафедры математической физики в 1911 году. Пик был избран членом Чешской академии наук и искусств, но был исключен после захвата нацистами Праги. После ухода на пенсию в 1927 году, Пик вернулся в Вену, город, где он родился. После аншлюса, когда нацисты вошли в Австрию 12 марта 1938 года, Пик вернулся в Прагу. В марте 1939 года нацисты вторглись в Чехословакию. Георг был отправлен в концентрационный лагерь Терезин 13 июля 1942. Он умер через две недели.

Теорема Пика. Теорема Пика - классический результат комбинаторной геометрии и геометрии чисел. Площадь многоугольника с целочисленными вершинами равна сумме В + Г/2 – 1, где В есть количество целочисленных точек внутри многоугольника, а Г количество целочисленных точек на границе многоугольника.

Доказате льст во теоремы Пика. Любой такой многоугольник легко разбить на треугольники с вершинами в узлах решётки, не содержащие узлов ни внутри, ни на сторонах. Можно показать, что площади всех этих треугольников одинаковы и равны 1/2, а, следовательно, площадь многоугольника равна половине их числа Т. Чтобы найти это число, обозначим через п число сторон многоугольника, через i - число узлов внутри его и через b - число узлов на сторонах, включая вершины. Общая сумма углов всех треугольников равна πТ. Теперь найдём эту сумму другим способом. Сумма углов с вершиной в любом внутреннем узле составляет 2 π , т. е. общая сумма таких углов равна 2 π i ; общая сумма углов при узлах на сторонах, но не в вершинах равна (b – n) π , а сумма углов при вершинах многоугольника - (п – 2) π . Таким образом, π Т = 2i π + (b – n) π + (n – 2) π , откуда получаем выражение для площади S многоугольника, известное как формула Пика. Например, на рисунке b = 9, i = 24, а следовательно, площадь многоугольника равна 27,5.

Применение. Итак, вернемся к заданию В6. Теперь, зная новую формулы, мы легко сможем найти площадь этого четырехугольника. Так как В – 5; Г – 14, то 5+14:2-1=11 (см в квадрате) Площадь данного четырехугольника равна 11 см в квадрате.

По той же формуле мы можем найти площадь треугольника. Так как В-14, Г-10,то 14+10:2-1=18 (см в квадрате) Площадь данного треугольника равна 18 см в квадрате.

Если В-9, Г-12, тогда: 9+12:2-1=14 (см в квадрате) Площадь данного четырехугольника равна 14 см в квадрате.

Области применения формулы. Помимо того, что формула применяется в различного рода экзаменах, заданиях и так далее, она сопровождает весь окружающий нас мир.

По формуле Пика S =В + ½ Г-1 1)туловище В=9,Г=26, S=9+½·26-1=9+13-1= 21 2) хвост В=0,Г=8, S= 0 +½· 8 -1= 3 3) S= 21+3=24

По формуле Пика S =В + ½ Г-1 В=36, Г=21 S = 36 + ½· 21 -1=36+10,5-1=45,5

Заключение. В итоге, я пришла к выводу, что существует много различных способов решения задач на нахождение площади, не изучаемых в школьной программе, и показала их на примере формулы Пика.

Справочник. Многоугольник без самопересечений называется решётчатым, если все его вершины находятся в точках с целочисленными координатами (в декартовой системе координат). Точка координатной плоскости называется целочисленной, если обе её координаты целые.


Вычисление площади фигуры.

Метод Пика

Работа обучающейся 5Б класса МБОУ СОШ №23 г. Иркутска

Балсуковой Александры

Руководитель: Ходырева Т.Г.

2014г.

Вычисление площади фигуры. Метод Пика

Объект исследования : задачи на клетчатой бумаге

Предмет исследования : задач на вычисление площади многоугольника на клетчатой бумаге, методы и приёмы их решения.

Методы исследования : сравнение, обобщение, аналогии, изучение литературы и Интернет-ресурсов, анализ информации.

Цель исследования:

    выбрать главную, интересную, понятную информацию

    Проанализировать и систематизировать полученную информацию

    Найти различные методы и приёмы решения задач на клетчатой бумаге

    проверить формулы вычисления площадей геометрических фигур с помощью формулы Пика

    Создать электронную презентацию работы для представления собранного материала

Геометрия является самым могущественным средством для изощрения наших умственных способностей и дает нам возможность правильно мыслить и рассуждать.

(Г. Галилей)

    Актуальность темы

Увлечение математикой часто начинается с размышления над какой-то задачей. Так при изучении темы «Площади многоугольников» встает вопрос есть ли задачи, отличные от задач рассмотренных в учебнике. К таким задачам можно отнести задачи на клетчатой бумаге. В чём заключается особенность таких задач, существуют ли специальные методы и приёмы решения задач на клетчатой бумаге. На уроке математики учитель познакомила нас с интересным методом вычисления многоугольников. Я приступила к изучению литературы, Интернет-ресурсов по данной теме. Казалось бы, что увлекательного можно найти на клетчатой плоскости, то есть, на бесконечном листке бумаги, расчерченном на одинаковые квадратики. Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны. Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке. Для многих задач на бумаге в клетку нет общего правила решения, конкретных способов и приёмов. Вот это их свойство обуславливает их ценность для развития не конкретного учебного умения или навыка, а вообще умения думать, размышлять, анализировать, искать аналогии, то есть, эти задачи развивают мыслительные навыки в самом широком их понимании.

И еще я узнала, что такие задачи рассматриваются в контрольно – измерительных материалах ГИА и ЕГЭ. Поэтому, считаю изучение этого материала полезным для применения его не только в дальнейшем учебном процессе, но и для решения нестандартных олимпиадных задач.

2.Понятие площади

Площадь - численная характеристика двумерной геометрической фигуры, показывающая размер этой фигуры. Исторически вычисление площади называлось . Фигура, имеющая площадь, называется квадрируемой .

Площадь плоской фигуры с точки зрения геометрии

1. Площадь -мера плоской фигуры по отношению к стандартной фигуре, являющейся квадратом со стороной, равной единице длины.

2. Площадь - численная характеристика, приписываемая плоским фигурам определенного класса (например, многоугольникам). Площадь квадрата со стороной, равной единице длины, принимаемая равной единице площади

3. Площадь - положительная величина, численное значение которой обладает следующими свойствами:

Равные фигуры имеют равные площади;

Если фигура разбивается на части, являющиеся простыми фигурами (т.е. те, которые можно разбить на конечное число плоских треугольников), то площадь этой фигуры равна сумме площадей ее частей;

Площадь квадрата со стороной, равной единице измерения, равна единице.

Таким образом, можно сделать вывод, что площадь не является конкретной величиной, а только дает некоторую условную характеристику какой-либо плоской фигуры. Чтобы найти площадь произвольной фигуры, то необходимо определить, сколько квадратов со стороной, равной единице длины, она в себя вмещает. Например, возьмем прямоугольник, в котором квадратный сантиметр укладывается ровно 6 раз. Это означает, что площадь прямоугольника равняется 6 см 2 .

Выбор площади квадрата со стороной, равной единице измерения, в качестве минимальной единицы измерения всех площадей не случаен. Это результат договоренности между людьми, возникший в ходе «естественного» многовекового отбора. Кроме того, были и другие предложения о единице измерения. Так, например, за такую единицу предлагалось взять площадь равностороннего треугольника (т.е. любую плоскую фигуру можно было представить в виде «суммы» некоего числа равносторонних треугольников), что привело бы к изменению численного представления площадей.

Таким образом, формулы для вычисления площадей появились в математике и осознались человеком не сразу-это многих ученых, проживающих в разные эпохи и разных странах. (Ошибочные формулы не находили место в науке и уходили в небытие). Истинные же формулы дополнялись, исправлялись и обосновывались на протяжений тысячелетий, пока не дошли до нас в их современном обличии.

Само же измерение площади состоит в сравнении площади данной фигуры с площадью фигуры, принятой за единицу измерения. В результате сравнения получается некоторое число- численное значение площади данной фигуры. Это число показывает, во сколько раз площадь данной фигуры больше (или меньше) площади фигуры, принятой за единицу измерения площади.

Таким образом, можно сделать вывод, что площадь-это искусственная величина, исторически введенная человеком для измерения некоторого свойства плоской фигуры. Необходимость ввода такой величины обуславливалась возрастающими потребностями в знании того, насколько большая та или иная территория, сколько надо зерна, чтобы засеять поле или вычислить площадь поверхности пола для украшения орнаментной плитки.

    Формула Пика

Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу). Точнее, если S – площадь многоугольника, В - число клеток, которые целиком лежат внутри многоугольника, и Г - число клеток, которые имеют с внутренностью. Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги – в таких, где пересекаются линии сетки многоугольника хоть одну общую точку.

Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника.

Для вычисления площади такого многоугольника можно воспользоваться следующей теоремой:

Теорема . Пусть - число целочисленных точек внутри многоугольника, - количество целочисленных точек на его границе, - его площадь. Тогда справедлива формула Пика :

Пример. Для многоугольника на рисунке L = 7 (красные точки), 9 (зеленые точки), поэтому S = 7+ 9/2 -1 = 10,5 квадратных единиц.

Теорема Пика - классический результат и .

Площадь треугольника с вершинами в узлах и не содержащего узлов ни внутри, ни на сторонах (кроме вершин), равна 1/2. Этот факт.

3. История

Формула Пика была открыта австрийским математиком Георгом Александром (1859-1942) в г.. В 16 лет Георг закончил школу и поступил в . В 20 лет получил право преподавать физику и математику. В 1884 году Пик уехал в к . Там он познакомился с другим учеником Клейна, . Позже, в 1885 году, он вернулся в , где и прошла оставшаяся часть его научной карьеры.

Георг Пик дружил с Эйнштейном. Пик и Эйнштейн не только имели общие научные интересы, но и страстно увлекались музыкой. Пик, игравший в квартете, который состоял из университетских профессоров, ввёл Эйнштейна в научное и музыкальное общества Праги.

Круг математических интересов Пика был чрезвычайно широк. В частности, им более 50 научных работ. Широкую известность получила открытая им в 1899 году теорема Пика для расчёта площади многоугольника. В Германии эта теорема включена в школьные учебники.

4.Приложения формулы Пика

Формула Пика используется не только для вычисления площадей многоугольников, но и для решения многих задач олимпиадного уровня.

Некоторые примеры использования формулы Пика при решении задач:

1) Шахматный король обошел доску 8 × 8 клеток, побывав на каж-

дом поле ровно один раз и последним ходом вернувшись на исходное

поле. Ломаная, соединяющая последовательно центры полей, которые

проходил король, не имеет самопересечений. Какую площадь может

ограничивать эта ломаная? (Сторона клетки равна 1.)

Из формулы Пика сразу следует, что площадь, ограниченная ло-

маной, равна 64/2 − 1 = 31; здесь узлами решетки служат центры 64

полей и, по условию, все они лежат на границе многоугольника. Таким

образом, хотя таких «траекторий» короля достаточно много, но все они

ограничивают многоугольники равных площадей.

    Задачи из контрольно – измерительных материалов ГИА и ЕГЭ

Задание B3

Найдите площади фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

4.Заключение

В процессе исследования я изучила справочную, научно-популярную литературу. Узнала, что задача на нахождение площади многоугольника с вершинами в узлах сетки с подвигла австрийского математика Пика в 1899 году доказать замечательную формулу Пика.

В результате моей работы я расширила свои знания о решении задач на клетчатой бумаге, определили для себя классификацию исследуемых задач, убедились в их многообразии.

Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке Рассмотренные задания имеют различный уровень трудности – от простых до олимпиадных. Каждый может найти среди них задачи посильного уровня сложности, отталкиваясь от которых, можно будет переходить к решению более трудных.

Я пришла к выводу, что тема, которая меня заинтересовала, достаточно многогранна, задачи на клетчатой бумаге многообразны, методы и приёмы их решения также разнообразны. Поэтому наша я решила продолжить работу в этом направлении.

5. Используемая литература:

1.В а с и л ь е в Н. Б. Вокруг формулы Пика // Квант. - 1974. - № 12

2.К о к с е П р а с о л о в В. В. Задачи по планиметрии. - М.: МЦНМО, 2006.т е р Г. С.М. Введение в геометрию. - М.: Наука, 1966

3.Рослова Л.О., Шарыгин И.Ф. Измерения. – М.:Изд. «Открытый мир», 2005.

Интернет – ресурсы :

:

Отзыв на работу

«Вычисление площадей плоских фигур. Метод Пика»

Рассмотрение данной темы позволит повысить познавательную активность обучающегося, который впоследствии на уроках геометрии начнет видеть гармонию чертежа и перестанет воспринимать геометрию (да и математику в целом) как скучную науку.

Отзыв составила учитель математики

Ходырева Татьяна Георгиевна