Какова роль русской правды в укреплении государства. Возникновение Русской Правды: источники, княжеские уставы — реферат

Физике»

У читель физики :

Горшенёва Наталья Ивановна

2011 г
Роль эксперимента в обучении физике.

Уже в определении физики как науки заложено сочетание в ней как теоретической, так и практической частей. Очень важно, чтобы в процессе обучения физике учитель смог как можно полнее продемонстрировать своим ученикам взаимосвязь этих частей. Ведь когда учащиеся почувствуют эту взаимосвязь, то они смогут многим процессам, происходящим вокруг них в быту, в природе, дать верное теоретическое объяснение.

Без эксперимента нет, и не может быть рационального обучения физике; одно словесное обучение физике неизбежно приводит к формализму и механическому заучиванию. Первые мысли учителя должны быть направлены на то, чтобы учащийся видел опыт и проделывал его сам, видел прибор в руках преподавателя и держал его в своих собственных руках.

Учебный эксперимент - это средство обучения в виде специально организованных и проводимых учителем и учеником опытов.


Цели учебного эксперимента:

  • Решение основных учебно – воспитательных задач;

  • Формирование и развитие познавательной и мыслительной деятельности;

  • Политехническая подготовка;

  • Формирование мировоззрения учащихся.
Функции эксперимента:

  • Познавательная (осваиваются основы наук на практике);

  • Воспитывающая (формирование научного мировоззрения);

  • Развивающая (развивает мышление и навыки).

Виды физических экспериментов .

Какие формы обучения практического характера можно предложить в дополнение к рассказу преподавателя? В первую очередь , конечно, это наблюдение учениками за демонстрацией опытов, проводимых учителем в классе при объяснении нового материала или при повторении пройденного, так же можно предложить опыты, проводимые самими учащимися в классе во время уроков в процессе фронтальной лабораторной работы под непосредственным наблюдением учителя. Еще можно предложить: 1)опыты, проводимые самими учащимися в классе во время физического практикума; 2)опыты-демонстрации, проводимые учащимися при ответах; 3)опыты, проводимые учащимися вне школы по домашним заданиям учителя; 4)наблюдения кратковременных и длительных явлений природы, техники и быта, проводимые учащимися на дому по особым заданиям учителя.

Что можно сказать о приведенных выше формах обучения?

Демонстрационный эксперимент является одной из составляющих учебного физического эксперимента и представляет собой воспроизведение физических явлений учителем на демонстрационном столе с помощью специальных приборов. Он относится к иллюстративным эмпирическим методам обучения. Роль демонстрационного эксперимента в обучении определяется той ролью, которую эксперимент играет в физике-науке как источник знаний и критерий их истинности, и его возможностями для организации учебно-познавательной деятельности учащихся.

Значение демонстрационного физического эксперимента заключается в том, что:

Учащиеся знакомятся с экспериментальным методом познания в физике, с ролью эксперимента в физических исследованиях (в итоге у них формируется научное мировоззрение);

У учащихся формируются некоторые экспериментальные умения: наблюдать явления, выдвигать гипотезы, планировать эксперимент, анализировать результаты , устанавливать зависимости между величинами, делать выводы и т.п.

Демонстрационный эксперимент, являясь средством наглядности, способствует организации восприятия учащимися учебного материала, его пониманию и запоминанию; позволяет осуществить политехническое обучение учащихся; способствует повышению интереса к изучению физике и созданию мотивации учения. Но при проведении учителем демонстрационного эксперимента основную деятельность выполняют сам учитель и, в лучшем случае, один - два ученика, остальные учащиеся только пассивно наблюдают за опытом, проводимым учителем, сами при этом ничего не делают собственными руками. Следовательно, необходимо наличие самостоятельного эксперимента учащихся по физике.

Лабораторные занятия.

При обучении физике в средней школе экспериментальные умения формируются, когда они сами собирают установки, проводят измерения физических величин, выполняют опыты. Лабораторные занятия вызывают у учащихся очень большой интерес, что вполне естественно, так как при этом происходит познание учеником окружающего мира на основе собственного опыта и собственных ощущений.

Значение лабораторных занятий по физике заключается в том, что у учащихся формируются представления о роли и месте эксперимента в познании. При выполнении опытов у учащихся формируются экспериментальные умения, которые включают в себя как интеллектуальные умения, так и практические. К первой группе относятся умения: определять цель эксперимента, выдвигать гипотезы, подбирать приборы, планировать эксперимент, вычислять погрешности, анализировать результаты, оформлять отчет о проделанной работе . Ко второй группе относятся умения: собирать экспериментальную установку, наблюдать, измерять, экспериментировать.

Кроме того, значение лабораторного эксперимента заключается в том, что при его выполнении у учащихся вырабатываются такие важные личностные качества, как аккуратность в работе приборами; соблюдение чистоты и порядка на рабочем месте, в записях, которые делаются во время эксперимента, организованность, настойчивость в получении результата. У них формируется определенная культура умственного и физического труда.

В практике обучения физике в школе сложились три вида лабораторных занятий:

Фронтальные лабораторные работы по физике;

Физический практикум;

Домашние экспериментальные работы по физике.

Выполнение самостоятельных лабораторных работ.

Фронтальные лабораторные работы - это такой вид практических работ, когда все учащиеся класса одновременно выполняют однотипный эксперимент, используя одинаковое оборудование. Фронтальные лабораторные работы выполняются чаще всего группой учащихся, состоящей из двух человек, иногда имеется возможность организовать индивидуальную работу. Тут возникает сложность: не всегда в школьном кабинете физики есть достаточное количество комплектов приборов и оборудования для проведения таких работ. Старое оборудование приходит в негодность, а, к сожалению, не все школы могут позволить себе закупку нового. Да и от ограничения по времени никуда не денешься. А если у одной из бригад что-то не получается, не работает какой-то прибор или чего-либо не хватает, тогда они начинают просить о помощи учителя , отвлекая других от выполнения лабораторной работы.

В 9-11 классах проводится физический практикум.

Физический практикум проводится с целью повторения, углубления, расширения и обобщения полученных знаний из разных тем курса физики; развития и совершенствования у учащихся экспериментальных умений путем использования более сложного оборудования, более сложного эксперимента; формирования у них самостоятельности при решении задач, связанных с экспериментом. Проводится физический практикум, как правило, в конце учебного года, иногда - в конце первого и второго полугодий и включает серию опытов по той или иной теме. Работы физического практикума учащиеся выполняют в группе из 2-4 человек на различном оборудовании; на следующих занятиях происходит смена работ, что делается по специально составленному графику. Составляя график, учитывают число учащихся в классе, число работ практикума, наличие оборудования. На каждую работу физического практикума отводятся два учебных часа, что требует введения в расписание сдвоенных уроков по физике. Это представляет затруднения. По этой причине и из-за недостатка необходимого оборудования практикуют одночасовые работы физического практикума. Следует отметить, что предпочтительными являются двухчасовые работы, поскольку работы практикума сложнее, чем фронтальные лабораторные работы, выполняются они на более сложном оборудовании, причем доля самостоятельного участия учеников значительно больше, чем в случае фронтальных лабораторных работ.

К каждой работе учитель должен составить инструкцию, которая должна содержать: название, цель, список приборов и оборудования, краткую теорию, описание неизвестных учащимся приборов, план выполнения работы. После проведения работы учащиеся должны сдать отчет, который должен содержать: название работы, цель работы, список приборов, схему или рисунок установки, план выполнения работы, таблицу результатов, формулы, по которым вычислялись значения величин, вычисления погрешностей измерений, выводы. При оценке работы учащихся в практикуме следует учитывать их подготовку к работе, отчет о работе, уровень сформированности умений, понимание теоретического материала, используемых методов экспериментального исследования.

А что будет, если учитель предложит ученикам выполнить опыт или провести наблюдение вне школы, то есть дома или на улице? опыты, задаваемые на дом, должны не требовать применения каких-либо приборов и существенных материальных затрат. Это должны быть опыты с водой, воздухом, с предметами которые есть в каждом доме. Кто-то может усомниться в научной ценности таких опытов, конечно, она там минимальна. Но разве плохо, если ребенок сам может проверить открытый за много лет до него закон или явление? Для человечества пользы никакой, но какова она для ребенка! Опыт - задание творческое, делая что-либо самостоятельно, ученик, хочет он этого или нет, а задумается: как проще провести опыт, где встречался он с подобным явлением на практике, где еще может быть полезно данное явление. Здесь надо заметить то, чтобы дети научились отличать физические опыты от всяческих фокусов, не путать одно с другим.

Домашние экспериментальные работы. Домашние лабораторные работы - простейший самостоятельный эксперимент, который выполняется учащимися дома, вне школы, без непосредственного контроля со стороны учителя за ходом работы.

Главные задачи экспериментальных работ этого вида:

Формирование умения наблюдать физические явления в природе и в быту;

Формирование умения выполнять измерения с помощью измерительных средств, использующихся в быту;

Формирование интереса к эксперименту и к изучению физики;

Формирование самостоятельности и активности.

Домашние лабораторные работы могут быть классифицированы в зависимости от используемого при их выполнении оборудования:

Работы, в которых используются предметы домашнего обихода и подручные материалы (мерный стакан, рулетка, бытовые весы и т.п.);

Работы, в которых используются самодельные приборы (рычажные весы, электроскоп и др.);

Что необходимо ребенку, чтобы провести опыт дома? В первую очередь, наверное, это достаточно подробное описание опыта, с указанием необходимых предметов, где в доступной для ребенка форме сказано, что надо делать, на что обратить внимание. Кроме того, учитель обязан провести подробный инструктаж.

Требования, предъявляемые к домашним экспериментам. Прежде всего, это, конечно, безопасность. Так как опыт проводится учеником дома самостоятельно, без непосредственного контроля учителя, то в опыте не должно быть никаких химических веществ и предметов, имеющих угрозу для здоровья ребенка и его домашнего окружения. Опыт не должен требовать от ученика каких-либо существенных материальных затрат, при проведении опыта должны использоваться предметы и вещества, которые есть практически в каждом доме: посуда, банки, бутылки, вода, соль и так далее. Выполняемый дома школьниками эксперимент должен быть простым по выполнению и оборудованию, но, в то же время, являться ценным в деле изучения и понимания физики в детском возрасте, быть интересным по содержанию. Так как учитель не имеет возможности непосредственно контролировать выполняемый учащимися дома опыт, то результаты опыта должны быть соответствующим образом оформлены (примерно так, как это делается при выполнении фронтальных лабораторных работ). Результаты опыта, проведенного учениками дома, следует обязательно обсудить и проанализировать на уроке. Работы учащихся не должны быть слепым подражанием установившимся шаблонам, они должны заключать в себе широчайшее проявление собственной инициативы, творчества, исканий нового. На основе вышесказанного кратко сформулируем предъявляемые к домашним экспериментальным заданиям требования :

Безопасность при проведении;

Минимальные материальные затраты;

Простота по выполнению;

Легкость последующего контроля учителем;

Наличие творческой окраски.
Домашний эксперимент можно задавать после прохождения темы в классе. Тогда ученики увидят собственными глазами и убедятся в справедливости изученного теоретически закона или явления. При этом полученные теоретически и проверенные на практике знания достаточно прочно отложатся в их сознании.

А можно и наоборот, задать задание на дом, а после выполнения провести объяснение явления. Таким образом, можно создать у учащихся проблемную ситуацию и перейти к проблемному обучению, которое непроизвольно рождает у учащихся познавательный интерес к изучаемому материалу, обеспечивает познавательную активность учащихся в ходе обучения, ведет к развитию творческого мышления учеников. В таком случае, даже если школьники не смогут объяснить увиденное дома на опыте явление сами, то они будут с интересом слушать рассказ преподавателя.

Этапы проведения эксперимента:


  1. Обоснование постановки эксперимента.

  2. Планирование и проведение эксперимента.

  3. Оценка полученного результата.
Любой эксперимент должен начинаться с гипотезы, а заканчиваться выводом.


  1. Формулировка и обоснование гипотезы, которую можно положить в основу эксперимента.

  2. Определение цели эксперимента.

  3. Выяснение условий, необходимых для достижения поставленной цели эксперимента.

  4. Планирование эксперимента, включающего ответ на вопросы:

    • какие наблюдение провести

    • какие величины измерить

    • приборы и материалы, необходимые для проведения опытов

    • ход опытов и последовательность их выполнения

    • выбор формы записи результатов эксперимента

  5. Отбор необходимых приборов и материалов

  6. Сбор установки.

  7. Проведение опыта, сопровождаемое наблюдениями, измерениями и записью их результатов

  8. Математическая обработка результатов измерений

  9. Анализ результатов эксперимента, формулировка выводов
Общую структуру физического эксперимента можно представить в виде:

Проводя любой эксперимент, необходимо помнить о требованиях, предъявляемых к эксперименту.

Требования к эксперименту:


  • Наглядность;

  • Кратковременность;

  • Убедительность, доступность, достоверность;

  • Безопасность.

Кроме вышеперечисленных видов экспериментов, существуют мысленные, виртуальные эксперименты (см. Приложение), которые проводятся в виртуальных лабораториях и имеют большое значение в случае отсутствия оборудования.


Психологи отмечают, что сложный зрительный материал запоминается лучше, чем его описание. Поэтому демонстрация опытов запечатлевается лучше, чем рассказ учителя о физическом опыте.

Школа -это самая удивительная лаборатория, потому что в ней создается будущее! И какое оно будет, зависит от нас, учителей!

Я считаю, что если учитель в преподавании физики пользуется экспериментальным методом, при котором учащиеся систематически включаются в поиски путей решения вопросов и задач, то можно ожидать, что результатом обучения будет развитие разностороннего, оригинального, не скованного узкими рамками мышления. А - это путь к развитию высокой интеллектуальной активности обучаемых.

Приложение.
Классификация видов экспериментов .
Полевой

(экскурсии)


Домашний

Школьный


Мысленный

Реальный

Виртуальный

В зависимости от количества и размеров


Лаборатор
Практичес
демонстрационные

По месту проведения

По способу проведения

В зависимости от субъекта

Эксперимент

Взаимная обусловленность эмпирических и теоретических знаний вряд ли вызывает сомнение. Современные эксперименты и теория настолько сильно переплетены, что однозначно ответить на вопрос, какое из данных знаний можно рассматривать в качестве абсолютного начала естественно - научного познания, практически не представляется возможным, хотя можно привести многочисленные примеры научных изысканий, когда эмпирические начала предвосхищают теорию, и наоборот.

На всех этапах экспериментальных исследований весьма важна мыслительная деятельность экспериментатора, которая чаще всего носит философский характер. Решая, например, вопросы: что такое электрон, является ли он элементом реального мира или чистой абстракцией, можно ли его наблюдать, в какой мере знания об электроне истины и тому подобное - ученый, так или иначе, касается философских проблем естествознания. Более глубокая связь естествознания с философией свидетельствует о более высоком уровне его развития. Естественно, с течением времени теоретическое мышление с философской ориентацией меняется и приобретает различные формы и содержание. Лучших результатов достигнет естествоиспытатель, свободно владеющий своими узкопрофессиональными вопросами и достаточно легко ориентирующийся в общих философских вопросах, связанных, прежде всего с диалектикой и теорией естественно - научного познания.

Стремление ученых создать научную картину мира сближает естествознание с философией. Научная картина мира обладает большей общностью, чем теоретические схемы конкретных естественнонаучных утверждений. Она образуется посредством особых связей отдельных элементов познания и представляет собой весьма общую идеальную модель реальных процессов, явлений и свойств вещества, исследуемых в рамках узких отраслей естествознания. В широком понимании научная картина мира выражает общее знание о природе, характерное для данного этапа развития общества. Описание картины мира в общем представлении создает понятия, более или менее близкие к понятиям повседневного, обыденного языка.

В те периоды развития естествознания, когда на смену старой картины мира приходит новая, при постановке эксперимента возрастает роль философских идей в виде теоретических постулатов, на основе которых реализуется эксперимент.

В эпоху становления физики как науки, когда специальных естественнонаучных теорий не существовало, ученые, как правило, руководствовались общими философскими представлениями о единстве и родстве материальных объектов и явлений природы. Например, Г. Галилей, закладывая основы классической механики, опирался на общую модель единства мира. Такая идея помогла “земными глазами” взглянуть на небо и описать движение небесных тел по аналогии с движением тел на Земле, что в свою очередь подтолкнуло ученых к более тщательному изучению различных форм механического движения, в результате чего были открыты классические законы механики.

Философская идея материального единства мира питала многие экспериментальные исследования и способствовала накоплению новых естественнонаучных фактов. Так, например, известный датский физик X. Эрстед, размышляя о связи между разными по физической природе явлениями - теплотой, светом, электричеством и магнетизмом, - в результате экспериментальных исследований открыл магнитное действие электрического тока.

Особенно важна роль теоретических предпосылок эксперимента, когда сложившиеся теоретические знания служат основой новых естественнонаучных проблем и гипотез, требующих предварительного эмпирического обоснования.

В современных условиях возрастает роль теоретической работы на подготовительном этапе эксперимента, на каждой операции его по-разному включаются те или иные теоретические и практические процедуры исследований. Можно назвать четыре основные операции подготовительного этапа эксперимента:

  • * постановка задачи эксперимента и выдвижение гипотетических вариантов её решения;
  • * разработка программы экспериментального исследования;
  • * подготовка исследуемого объекта и создание экспериментальной установки;
  • * качественный анализ хода эксперимента и корректировка программы исследования и приборного обеспечения.

При кажущейся случайности эмпирические открытия вписываются в вполне определенную логическую схему, отправным элементом которой выступает противоречие между известным теоретическим знанием и новыми эмпирическими данными. Такое противоречие является логическим основанием вновь возникшей проблемы - своеобразной границы между знанием и незнанием - первого шага осмысления неизвестного. Следующий шаг - выдвижение гипотезы как возможного решения проблемы.

Выдвинутая гипотеза вместе с выводимыми из неё следствиями служит основой, определяющей цели, задачи и практические средства эксперимента. В одних случаях при сложившейся теоретической схеме гипотеза может обладать высокой степенью достоверности. Такая гипотеза жестко задает программу эксперимента и нацеливает его на поиск теоретически предсказанного результата. В других случаях, когда теоретическая схема только-только зарождается, степень достоверности гипотезы может быть не высокой. При этом теория лишь эскизно задает схему эксперимента, увеличивается число проб и ошибок.

На подготовительной стадии эксперимента огромную, неоценимую роль играет изобретательская и конструкторская работа как научный творческий процесс. Успех любой экспериментальной работы зависит от таланта ученого, определяемого его прозорливостью, глубиной абстрактного мышления, оригинальностью решения технических задач, способностью к изобретательской деятельности, представляющей собой последовательный, целенаправленный переход от теоретического знания к практическому поиску.

Таким образом, хотя эксперимент основывается на практической деятельности, но, будучи естественнонаучным методом познания действительности, он включает логические и теоретические средства, гармоничное сочетание, которых и позволяет успешно решить поставленную задачу.

Подготовка исследуемого объекта и создание экспериментальной установки - важные шаги реализации программы исследований, после которых наступает основной период проведения самой экспериментальной работы. Такой период, казалось бы, характеризуется чисто эмпирическими признаками: изменением управляемых условий, включением и выключением приборов и различных механизмов, фиксированием тех или иных свойств, эффектов и т. п. В ходе эксперимента как бы уменьшается роль теории. Но на самом деле, наоборот - без теоретического знания невозможны постановка промежуточных задач и их решение. Экспериментальная установка - овеществленное, материализованное знание. Роль теории в ходе эксперимента предполагает выяснение механизма формирования объекта познания и взаимодействия субъекта, приборов и объекта, измерения, наблюдения и регистрации экспериментальных данных.

Теоретические предпосылки могут содействовать получению позитивных сведений о мире, научному открытию либо мешать, уводить в другую сторону от верного пути - все зависит от того, верны или неверны данные предпосылки. Иногда ученые в силу объективных или субъективных обстоятельств руководствуются ложными предпосылками, что, естественно, не способствует объективному отражению действительности. Например, ложное истолкование научных проблем кибернетики и генетики привело к существенному отставанию в данных отраслях знания.

В истории естествознания прослеживается тенденция развития процесса познания от качественного изучения объекта или явления к установлению их количественных параметров и выявлению общих закономерностей, выраженных в строгой математической форме. Строгость и точность экспериментальных сведений при этом зависит от совершенства методов измерений и чувствительности разрешающей способности и точности измерительной техники.

Современный эксперимент характеризуется высокой точностью измерений. Можно назвать несколько путей повышения точности:

  • 1) введение новых эталонов;
  • 2) применение чувствительных приборов;
  • 3) учет всех условий, влияющих на объект;
  • 4) сочетание разных видов измерений;
  • 5) автоматизация процесса измерений.

Оптимальное сочетание данных путей определяется субъективным свойством естествоиспытателя и в большой степени зависит от степени совершенства экспериментальной техники. Организация постоянного взаимодействия наблюдения, измерения и количественного описания в процессе эксперимента опосредуется теоретическими знаниями, включающими философское представление о картине мира, гипотезы и т. д.

Важнейшей составной частью научных исследований является эксперимент, основой которого является научно поставленный опыт с точно учитываемыми и управляемыми условиями. В научном языке и исследовательской работе термин "эксперимент" обычно исполь­зуется в значении, общем для целого ряда сопряженных понятий: опыт, целенаправленное наблюдение, воспроизведение объекта по­знания, организация особых условий его существования, проверка предсказания. В это понятие вкладывается научная постановка опы­тов и наблюдение исследуемого явления в точно учитываемых ус­ловиях, позволяющих следить за ходом его развития и воссозда-

вать его каждый раз при повторении этих условий. Само по себе понятие "эксперимент" означает действие, направленное на созда­ние условий в целях воспроизведения того или иного явления и, по возможности, наиболее чистого, т.е. не осложняемого другими яв­лениями.

Основной целью эксперимента являются выявление свойств ис­следуемых объектов, проверка справедливости гипотез и на этой основе широкое и глубокое изучение темы научного исследования. Постановка и организация эксперимента определяются его назна­чением. Эксперименты, которые проводятся в различных отраслях науки, являются отраслевыми и имеют соответствующие названия: химические, биологические, физические, психологические, соци­альные и т.п. Они различаются:

По способу формирования условий (естественный и искусст­венный);

По целям исследования (преобразующие, констатирующие, контролирующие, поисковые, решающие);

По организации проведения (лабораторные, натурные, поле­вые, производственные и т.п.);

» по структуре изучаемых объектов и явлений (простые, слож­ные);

По характеру внешних воздействий на объект исследования (вещественные, энергетические, информационные);

По характеру взаимодействия средства экспериментального ис­следования с объектом исследования (обычный и модельный);

» по типу моделей, исследуемых в эксперименте (материаль­ный и мысленный);

По контролируемым величинам (пассивный и активный);

» по числу варьируемых факторов (однофакторный и много­факторный);

По характеру изучаемых объектов или явлений (технологи­ческий, социометрический) и т.п.

Для классификации экспериментов могут быть использованы и другие признаки.

Из числа названных видов естественный эксперимент предпо­лагает проведение опытов в естественных условиях существования Объекта исследования (чаще всего используется в биологических, Социальных, педагогических и психологических науках).

Искусственный эксперимент предполагает формирование ис­кусственных условий (широко применяется в естественных и тех­нических науках).

Преобразующий (созидательный) эксперимент включает ак­тивное изменение структуры и функций объекта исследования в соответствии с выдвинутой гипотезой, формирование новых связей и отношений между компонентами объекта или между исследуе­мым объектом и другими объектами. Исследователь в соответствии с раскрытыми тенденциями развития объекта исследования пред­намеренно создает условия, которые должны способствовать фор­мированию новых свойств и качеств объекта.

Констатирующий эксперимент используется для проверки оп­ределенных предположений. В процессе этого эксперимента кон­статируется наличие определенной связи между воздействием на объект исследования и результатом, выявляется наличие опреде­ленных фактов.

Контролирующий эксперимент сводится к контролю за резуль­татами внешних воздействий над объектом исследования с учетом его состояния, характера воздействия и ожидаемого эффекта.

Поисковый эксперимент проводится в том случае, если затруд­нена классификация факторов, влияющих на изучаемое явление вследствие отсутствия достаточных предварительных (априорных) данных. По результатам поискового эксперимента устанавливается значимость факторов, осуществляется отсеивание незначимых.

Решающий эксперимент ставится для проверки справедливости основных положений фундаментальных теорий в том случае, когда две или несколько гипотез одинаково согласуются со многими яв­лениями. Это согласие приводит к затруднению, какую именно из гипотез считать правильной. Решающий эксперимент дает такие факты, которые согласуются с одной из гипотез и противоречат другой. Примером решающего эксперимента cлужат опыты по про­верке справедливости ньютоновской теории истечения света и вол­нообразной теории Гюйгенса. Эти опыты были проведены француз­ским ученым Фуко (1819-1868 гг.) с целью изучения скорости распространения света внутри прозрачных тел. Согласно гипотезе истечения, скорость света внутри таких тел должна быть больше, чем в пустоте. Но Фуко своими опытами доказал обратное, т.е. что в менее плотной среде скорость света большая. Этот опыт Фуко и был тем решающим опытом, который разрешил спор между двумя гипотезами (в настоящее время гипотеза Гюйгенса заменена элект­ромагнитной гипотезой Максвелла).

Другим примером решающего эксперимента может служить спор между Птолемеем и Коперником о движении Земли. Решающий опыт Фуко с маятником окончательно решил спор в пользу теории Коперника.

Лабораторный эксперимент проводится в лабораторных усло­виях с применением типовых приборов, специальных моделирую­щих установок, стендов, оборудования и т.д. Чаще всего в лабора­торном эксперименте изучается не сам объект, а его образец (модель). Этот эксперимент позволяет доброкачественно, с требуемой повтор-ностыо изучить влияние одних характеристик при варьировании других, получить хорошую научную информацию с минимальными затратами времени и ресурсов. Однако такой эксперимент не всегда полностью моделирует реальный ход изучаемого процесса, поэтому возникает потребность в проведении натурного эксперимента.

Натурный эксперимент проводится в естественных условиях и на реальных объектах. Этот вид эксперимента часто используется в процессе натурных испытаний изготовленных систем. В зависимо­сти от места проведения испытаний натурные эксперименты под­разделяются на производственные, полевые, полигонные, полуна­турные и т.п. Натурный эксперимент всегда требует тщательного продумывания и планирования, рационального выбора методов ис­следования.

Практически во всех случаях основная научная проблема натур­ного эксперимента - обеспечить достаточное соответствие (адек­ватность) условий эксперимента реальной ситуации, в которой будет работать впоследствии создаваемый объект. Поэтому центральными задачами натурного эксперимента являются:

Изучение характеристик воздействия среды на испытуемый объект;

* идентификация статистических и динамических параметров объекта;

Оценка эффективности функционирования объекта и про­верка его на соответствие заданным требованиям.

Эксперименты могут быть открытыми и закрытыми, они широко распространены в психологии, социологии, педагогике. В откры­том эксперименте его задачи открыто объясняются испытуемым, в закрытом - в целях получения объективных данных эти задачи скрываются от испытуемого. Любая форма открытого эксперимента влияет (часто активизирует) на субъективную сторону поведения испытуемых. В этой связи открытый эксперимент целесообразен

только тогда, когда имеются возможность и достаточная уверен­ность в том, что удастся вызвать у испытуемого живое участие и субъективную поддержку намечаемой работе.

Закрытый эксперимент характеризуется тем, что его тщательно маскируют; испытуемый не догадывается об эксперименте, и работа протекает внешне в естественных условиях. Такой эксперимент не вызывает у испытуемых повышенной настороженности и излишнего самоконтроля, стремления вести себя не так, как обычно.

Простой эксперимент используется для изучения объектов, не имеющих разветвленной структуры, с небольшим количеством вза­имосвязанных и взаимодействующих элементов, выполняющих простейшие функции.

В сложном эксперименте изучаются явления или объекты с разветвленной структурой (можно выделить иерархические уровни) и большим количеством взаимосвязанных и взаимодействующих элементов, выполняющих сложные функции. Высокая степень связ­ности элементов приводит к тому, что изменение состояния какого-либо элемента или связи влечет за собой изменение состояния мно­гих других элементов системы. В сложных объектах исследования возможно наличие нескольких разных структур, нескольких раз­ных целей. Но все же конкретное состояние сложного объекта мо­жет быть описано. В очень сложном эксперименте изучается объект, состояние которого по тем или иным причинам до сих пор не удается подробно и точно описать. Например, для описания требуется боль­ше времени, чем то, которым располагает исследователь между сме­нами состояний объекта, или когда современный уровень знаний недостаточен для проникновения в существо связей объекта (либо они непонятны).

Информационный эксперимент используется для изучения воз­действия определенной (различной по форме и содержанию) инфор­мации на объект исследования. Чаще всего информационный экс­перимент используется в биологии, психологии, социологии, кибернетике и т.п. С помощью этого эксперимента изучается изме­нение состояния объекта исследования под влиянием сообщаемой ему информации.

Вещественный эксперимент предполагает изучение влияния различных вещественных факторов на состояние объекта исследо­вания. Например, влияние различных пластифицирующих добавок на подвижность бетонной смеси, прочность бетона и т.п.

Энергетический эксперимент используется для изучения воз­действия различных видов энергии (электромагнитной, механичес-

кой, тепловой и т.д.) на объект исследования. Этот тип экспери­мента широко распространен в естественных науках.

Обычный (или классический) эксперимент включает экспери­ментатора как познающего субъекта, объект или предмет экспери-|ментального исследования и средства (инструменты, приборы, экс­периментальные установки), при помощи которых осуществляется эксперимент. В обычном эксперименте экспериментальные средства непосредственно взаимодействуют с объектом исследования. Они являются посредниками между экспериментатором и объектом ис­следования.

Модельный эксперимент в отличие от обычного имеет дело с моделью исследуемого объекта. Модель входит в состав экспери­ментальной установки, замещая не только объект исследования, но часто и условия, в которых изучается некоторый объект. Модель­ный эксперимент при расширении возможностей эксперименталь­ного исследования одновременно имеет и ряд недостатков, связан­ных с тем, что различие между моделью и реальным объектом может стать источником ошибок и, кроме того, экстраполяция результа­тов изучения поведения модели на моделируемый объект требует дополнительных затрат времени и теоретического обоснования пра­вомочности такой экстраполяции.

Различие между орудиями эксперимента при моделировании по­зволяет выделить мысленный и материальный эксперимент. Мыс­ленный эксперимент является одной из форм умственной деятель­ности познающего субъекта, в процессе которой воспроизводится в воображении структура реального эксперимента. Орудиями мыс­ленного (умственного) эксперимента являются мысленные модели исследуемых объектов или явлений (чувственные образы, образно-знаковые модели, знаковые модели). Для обозначения мысленного эксперимента иногда пользуются терминами: идеализированный или воображаемый эксперимент.

Структура мысленного эксперимента включает:

* построение мысленной модели объекта исследования, идеа­лизированных условий эксперимента и воздействий на объект;

* сознательное и планомерное изменение (комбинирование) ус­ловий эксперимента и воздействий на объект;

* сознательное и точное применение на всех стадиях экспери­мента объективных законов науки, благодаря чему исключа-" ется абсолютный произвол. В результате такого эксперимента формируются выводы.

Материальный эксперимент имеет аналогичную структуру. Однако в материальном эксперименте используются материальные, а не идеальные объекты исследования. Основное отличие матери­ального эксперимента от мысленного состоит в том, что реальный эксперимент представляет собой форму объективной материальной связи сознания с внешним миром, между тем как мысленный экс­перимент является специфической формой теоретической деятель­ности субъекта.

Сходство мысленного эксперимента с реальным в значительной мере определяется тем, что всякий реальный эксперимент, прежде чем быть осуществленным на практике, сначала проводится чело­веком мысленно в процессе обдумывания и планирования, поэтому мысленный эксперимент нередко выступает в роли идеального плана реального эксперимента, в известном смысле предваряя его.

Мысленный эксперимент имеет более широкую сферу примене­ния, чем реальный эксперимент, так как применяется не только при подготовке и планировании последнего, но и в тех случаях, когда проведение реальных опытов представляется невозможным. Так, Галилей в мысленном эксперименте пришел к выводу о суще­ствовании движения по инерции, опрокинувшему аристотелевскую точку зрения, согласно которой движущееся тело останавливается, если сила, его толкающая, прекращает свое действие.

Этот вывод мог быть получен только с помощью мысленного эк­сперимента. По этому поводу А. Эйнштейн говорил следующее: "Мы видели, что закон инерции нельзя вывести непосредственно из экс­перимента, его можно вывести лишь умозрительно - мышлением, связанным с наблюдением. Этот эксперимент никогда нельзя вы­полнить в действительности, хотя он ведет к глубокому пониманию действительных экспериментов".

Мысленный эксперимент, заменяя собой реальный, расширяет границы познания, ибо обеспечивает получение такой информации, которую иными средствами добыть невозможно. Мысленный экс­перимент позволяет преодолеть неизбежную ограниченность реаль­ного опыта путем абстрагирования от действия нежелательных, затемняющих причин, полное устранение которых в реальном экс­перименте практически недостижимо. Мысленный эксперимент является существенным моментом всякой творческой деятельности.

Мысленный эксперимент используется не только учеными, но и писателями, художниками, педагогами, врачами. Мысленное экс­периментирование ярко проявляется в мышлении шахматистов. Роль мысленного эксперимента в техническом конструировании и изоб-

ретательстве занимает первостепенное значение. Результаты мыс­ленного эксперимента находят отражение в формулах, чертежах, графиках, набросках, эскизных проектах и т.п.

Пассивный эксперимент предусматривает измерение только выбранных показателей (параметров, переменных) в результате: наблюдения за объектом без искусственного вмешательства в его

Функционирование. Примерами пассивного эксперимента является I наблюдение: за интенсивностью, составом, скоростями движения I транспортных потоков, за числом заболеваний вообще или какой-либо определенной болезнью; за работоспособностью определенной I группы лиц; за показателями, изменяющимися с возрастом; за числом дорожно-транспортных происшествий и т.п.

Пассивный эксперимент, по существу, является наблюдением, 1 которое сопровождается инструментальным измерением выбранных показателей состояния объекта исследования.

Активный эксперимент связан с выбором специальных вход­ных сигналов (факторов) и контролирует вход и выход исследуемой системы.

Однофакторный эксперимент предполагает:

Выделение нужных факторов;

Стабилизацию мешающих факторов;

Поочередное варьирование факторов, интересующих иссле­дователя.

Стратегия многофакторного эксперимента состоит в том, что варьируются все переменные сразу и каждый эффект оценивается по результатам всех опытов, проведенных в данной серии экспери­ментов.

Технологический эксперимент направлен на изучение элементов технологического процесса (продукции, оборудования, деятельности работников и т.п.) или процесса в целом.

Как уже отмечалось, приведенная классификация экспериментальных исследований не может быть признана полной, поскольку

с расширением научного знания расширяется и область применения экспериментального метода. Кроме того, в зависимости от за дач эксперимента различные его виды могут объединяться, образуя I комплексный или комбинированный эксперимент.

Для проведения эксперимента любого типа необходимо:

Разработать гипотезу, подлежащую проверке;

Создать программы экспериментальных работ;

» определить способы и приемы вмешательства в объект иссле­дования;

* обеспечить условия для осуществления процедуры экспери­ментальных работ;

* разработать пути и приемы фиксирования хода и результа­тов эксперимента;

* подготовить средства эксперимента (приборы, установки, мо­дели и т.п.);

» обеспечить эксперимент необходимым обслуживающим пер­соналом.

Особое значение имеет правильная разработка методики экспе­римента. Методика - это совокупность мыслительных и физичес­ких операций, размещенных в определенной последовательности, в соответствии с которой достигается цель исследования. При разра­ботке методики проведения эксперимента необходимо предусмат­ривать:

» проведение предварительного целенаправленного наблюдения над изучаемым объектом или явлением с целью определения исходных данных (гипотез, выбора варьирующих факторов);

* создание условий, в которых возможно экспериментирова­ние (подбор объектов для экспериментального воздействия, устранение влияния случайных факторов);

* определение пределов измерений;

» систематическое наблюдение за ходом развития изучаемого явления и точные описания фактов;

* проведение систематической регистрации измерений и оце­нок фактов различными средствами и способами;

* создание повторяющихся ситуаций, перекрестных воздей­ствий, изменение их характера и условий;

* создание усложненных ситуаций с целью подтверждения или опровержения ранее полученных данных;

* переход от эмпирического изучения к логическим обобще­ниям, к анализу и теоретической обработке полученного фак­тического материала.

Правильно разработанная методика экспериментального иссле­дования предопределяет его ценность. Поэтому разработка, выбор, определение методики должно проводиться особенно тщательно. При

определении методики необходимо использовать не только личный опыт, но и опыт коллег и других коллективов. Необходимо убе­диться в том, что она соответствует современному уровню науки, а также условиям, в которых выполняется исследование. Целесооб­разно проверить возможность использования методик, применяе­мых в смежных проблемах и науках.

Выбрав методику эксперимента, исследователь должен удостове­риться в ее практической пригодности. Это необходимо сделать даже в том случае, если методика давно апробирована другими лаборато­риями, так как она может оказаться неприемлемой или сложной в силу специфических особенностей климата, помещения, лаборатор­ного оборудования, персонала, объекта исследования и т.п.

Перед каждым экспериментом составляется его план (программа), который включает:

Цель и задачи эксперимента;

Выбор варьируемых факторов;

Обоснование объема эксперимента, числа опытов;

Порядок реализации опытов;

» определение последовательности изменения факторов;

Выбор шага изменения факторов, задание интервалов между будущими экспериментальными точками;

Обоснование средств измерений;

Описание проведения эксперимента;

Обоснование способов обработки и анализа результатов экс­перимента.

В методике подробно разрабатывается процесс проведения экс­перимента, составляется последовательность (очередность) прове­дения операций измерений и наблюдений, детально описывается каждая операция в отдельности с учетом выбранных средств для проведения эксперимента, обосновываются методы контроля каче­ства операций, обеспечивающие при минимальном (ранее установ­ленном) количестве измерений высокую надежность и заданную точность. Разрабатываются формы журналов для записи результа­тов наблюдений и измерений.

Важным разделом методики является выбор методов обработки и анализа экспериментальных данных. Обработка данных сводится к систематизации всех цифр, классификации и анализу. Результаты экспериментов должны быть сведены в таблицы, графики, формулы,

номограммы, позволяющие быстро и качественно сопоставлять и анализировать полученные результаты. Все переменные должны быть оценены в единой системе единиц физических величин.

Особое внимание в методике должно быть уделено математичес­ким методам обработки и анализу данных, например, установлению эмпирических зависимостей, аппроксимации связей между варьиру­ющими характеристиками, установлению критериев и доверитель­ных интервалов и др. Диапазон чувствительности (нечувствительно­сти) критериев должен быть стабилизирован (эксплицирован).

На объем и трудоемкость проведения экспериментальных работ существенно влияет вид эксперимента. Например, натурные и по­левые эксперименты, как правило, всегда трудоемкие, что следует учитывать при планировании.

При разработке плана-программы эксперимента всегда необходимо стремиться к его упрощению без потери точности и достоверности.

Эксперимент – это метод исследования некоторого явления в управляемых условиях. Отличается от наблюдения активным взаимодействием с изучаемым объектом. Обычно эксперимент проводится в рамках научного исследования и служит для проверки гипотезы, установления причинных связей между феноменами.

Эксперимент характеризуется вмешательством исследователя в положение изучаемых объектов, активным воздействием на предмет исследования различных приборов и экспериментальных средств. Эксперимент представляет собой одну из форм практики, где сочетается взаимодействие объектов по естественным законам и искусственно организованное человеком действие. Как метод эмпирического исследования этот метод предполагает и позволяет осуществлять в соответствии с решаемой проблемой следующие операции:

₋ конструктивизацию объекта;

₋ вычленение объекта или предмета исследования, его изоляцию от влияния побочных и затемняющих сущность явлений, изучение в относительно чистом виде;

₋ эмпирическую интерпретацию исходных теоретических понятий и положений, выбор или создание экспериментальных средств;

₋ целенаправленное воздействие на объект: планомерное изменение, варьирование, комбинирование различных условий в целях получения искомого результата;

₋ многократное воспроизведение хода процесса, фиксацию данных в протоколах наблюдений, их обработку и перенос на другие объекты класса, не подвергнутые исследованию.

Эксперимент проводится для решения определенных научных проблем и познавательных задач, продиктованных состоянием теории. Он необходим как основное средство накопления в изучении фактов, составляющих эмпирический базис всякой теории, является, как и вся практика в целом, объективным критерием относительной истинности теоретических положений и гипотез.

Важные условия эффективности проведения эксперимента в научном исследовании:

Предварительный тщательный анализ явления, его исторический обзор, изучение массовой практики с целью максимального изучения поля эксперимента и его задач;

Конкретизация гипотезы. В этом смысле гипотеза не просто постулирует, что данное средство улучшит результаты процесса, а высказывает предположение о том, что это средство из ряда возможных окажется наилучшим для определенных условий;

Четкое формулирование задач эксперимента; определение признаков, критерий, по которым будут изучаться явления, средства, оцениваться результат.

Этап проведения эксперимента. В осуществлении данного этапа четко прослеживаются три стадии.

На первой стадии основной целью является определение (констатация) начального уровня всех параметров и факторов, которые подлежат отслеживанию в эксперименте.

При проведении констатирующего эксперимента устанавливается реальное состояние дел, изучается начальное состояние исследуемого объекта, констатируется наличие или отсутствие исследуемых ка­честв и т. п. Для этого раз­рабатывается программа изучения, продумываются признаки, по которым можно определить степень сформированности качеств объекта, описываются критерии их оценки.

Только после подробного описания начального уровня можно приступать ко второй стадии эксперимента – формирующему (созидательному, преобразующему) эксперименту - непосредственной реализации раз­работанной системы мер по формированию качеств личности, повы­шению уровня воспитанности школьников, развития у них познава­тельных интересов и др.

В течение формирующего эксперимента педагог следит за изменением интересующих его параметров, может делать промежуточные срезы тех или иных характеристик и вносить коррективы в эксперимент. По ходу формирующего эксперимента педагог-исследователь фиксирует полученные результаты в дневнике эксперимента, в карте наблюдений, на магнитофонной записи, в фотографиях.

Третьей стадией практического этапа является тщательный сбор и регистрация (измерения, описание, оценки) всех показателей.

Контрольный этап эксперимента подтверждает или опровергает предположения относительно эффективности экспериментальных мер. На этом этапе сравниваются результаты, полученные на этапе констатации с результатами формирующего эксперимента. Для получения действительно достоверных результатов исследования необходимо привлечение большого числа исследуемых. Поэтому результаты нужно интерпретировать очень корректно.

Система экспериментальных мер осущест­вляется в экспериментальном классе, в котором проводятся все необходимые изменения в соответствии с программой эксперимента. Очень важно, чтобы экспериментальный класс был типичным по успеваемости, наполняемости, по составу мальчиков и девочек и т.п. Полученные данные сопоставляются с результатами контрольного класса, где условия обучения и воспитания остаются прежними. Такой вид эксперимента называется параллельный. В практике может быть использован и последовательный эксперимент, когда сопоставляются данные, полученные в одном и том же классе (группе учащихся) до и после эксперимента.

Обобщающий этап. Завершается эксперимент анализом его итогов:

Описанием результатов осуществления экспериментальных мер (конечное состояние исследуемого объекта);

Характеристикой условий, при которых эксперимент дал благоприятные результаты;

Описанием особенностей субъектов эксперимента (характеристики на учащихся);

Данными о затратах времени, средств.

Из сказанного ясно, что педагогический эксперимент - довольно сложная для проведения комплексный исследовательский метод.

Эксперимент вовсе не ограничивается лишь проведением опыта и получением исходной информации, а складывается из этапов, на каждом из которых по-своему сочетаются элементы чувственного, практического и теоретического познания. К ним можно отнести следующие: 1) подготовительный, 2) этап проведения эксперимента и получение опытных данных; 3)этап обработки опытных данных, или заключительный. Анализ структурных особенностей экспериментального исследования помогает раскрыть его природу с гносеологической точки зрения, то есть с позиции соотношения объекта и субъекта познавательной деятельности.


Похожая информация.


История научного метода заключена в самой науке. Исходя из этого положения, составитель решил последовательно ознакомиться со вступлениями к работам, ставшим вехами в развитии естествознания. Однако, выделив из всей совокупности данных вступления и предисловия, мы совершаем отбор, фильтрацию материала. Поэтому естественно возникает вопрос о представительности и полноте этой картины, иными словами, о мере ее объективности.

Всякий опыт представления прошлого есть проекция минувшего. Прошлое многомерно, а проекция дает лишь один разрез существовавшего некогда многообразия событий, лиц, идей. Поэтому как для читателя, так и для составителя важно уяснить работу механизма отбора, понять, как действует предложенный нами подход к прошлому.

В данном очерке мы укажем исторические границы рассматриваемого периода. Мы проследим за теми факторами, которые определяют избранные сочинения, и остановимся на тех пропусках, неизбежных пропусках, которые возникают в общей картине, и в то же время попытаемся оценить ее полноту и представительность. Мы отметим те особенности содержания и формы, которые отражены в предисловиях как явлениях литературы. Наконец, мы укажем на область применимости развитого приема и определим некоторые выводы, к которым нас приводит анализ созданного таким образом автопортрета науки.

Время, охваченное сборником, начинается с эпохи Возрождения, иными словами, мы всецело обращаемся к развитию знаний Нового Времени. Есть ряд причин такого ограничения рассматриваемого интервала времени, однако наиболее существенным представляется то, что последние пять веков являют нам единую и последовательную цепочку событий в европейской и мировой культуре, оказывающих в своей совокупности определяющее влияние на настоящее.

– так названо удивительное время в нашей истории. Время, когда с исключительной мощью проявились свежие общественные силы, разорвавшие идейные оковы феодализма, которые связывали Европу на протяжении тысячелетия. Развитие городов и становление буржуазии привело к расцвету ремесла и торговли. Нарождающийся капитализм дал новые формы социально‑экономических отношений. Великие географические открытия расширили наши представления о Земле почти до нынешних пределов. Устои католической церкви потрясла реформация. Гуманизм и просвещение преобразили мораль и этические нормы общества: изменилось само отношение к личности человека. Духовное раскрепощение привело к необыкновенному расцвету культуры – живопись и литература того времени до сих пор пленяют наше воображение.

Конец этой эпохи отмечен началом современного этапа развития науки. Именно тогда началось изучение природы, материального мира, самого человека на основе наблюдений и эксперимента, а не путем схоластики, созерцания и обращения к догме. Доказательство истины стали искать не в непротиворечивости авторитету, а в данных опыта. В рассматриваемых нами сочинениях мы видим те решительные скачки, которыми отмечено возникновение этого нового, научного мировоззрения. Может быть, единственно полезное, что было унаследовано от того прошлого, когда, выражаясь словами Тертулиана,– «...ни в одном исследовании после Евангелья нет больше нужды» – была воспитанная веками некоторая дисциплина и культура мышления. Все образование еще многие годы будет находиться в руках церкви, но, несмотря на это, часто ее воспитанники будут служить уже новым знаниям и новой культуре.

Рассматриваемое время ограничено сегодняшним днем. Однако в том, что мы завершаем этот обзор современностью, есть нечто большее, чем граница между прошлым и будущим.

Мы живем в эпоху социализма, в эпоху научно‑технической революции. Вслед за революционным изменением экономических отношений в обществе радикально изменилось не только состояние науки, но и сама ее общественная функция. Наука стала производительной силой.

Многим кажется, что существенной стала коллективность науки, однако наука как часть общественпого сознания, дающая каждому поколению сумму знаний и определяющая основные представления о мире, всегда была коллективной и интернациональной по своему духу, несмотря на то, что поворотные моменты в ее развитии четко связаны с отдельными лицами – их имена широко представлены в этой книге.

Если раньше наука была больше, хотя и не исключительно связана только с поиском научных истин, важность которых мотивировалась часто не столько практическими, сколько духовными запросами общества, то в эпоху научно‑технической революции, когда использование научных результатов стало менее опосредованным, когда научные.методы стали прямо проникать в технику и промышленность, неизбежно изменился и характер науки, и ее общественное лицо.

В нашу задачу не входит анализ того, как в будущем изменится развитие науки, хотя именно этим вопросом в значительной мере определяется тот повышенный интерес к истории науки, который ныне столь распространен. Интерес к прошлому обостряется в переходные моменты истории тогда, когда особенно остро возникает желание через прошлое заглянуть в будущее. Действительно, если прежде история науки привлекала главным образом философов и педагогов, то теперь ее вопросы интересуют все более широкие круги ученых и инженеров. История науки стала интересовать всех, кому хочется понять, как возникла эта грандиозная и могущественная сила, имеющая теперь такое влияние не только на всю нашу культуру, но и на саму нашу жизнь. Поэтому всякая попытка дать проекцию прошлого, охватить путь, пройденный наукой, представляется не только интересной, но и практически поучительной. Нам существенно важно представить себе богатство прошлого, поскольку сегодня мы несомненно переживаем рубеж в развитии науки. Нам было бы легче определить этот исторический рубеж, если бы у нас была большая временная перспектива. Этого, однако, нам не дано.

Вопрос об исторической перспективе стоял перед составителем и в более узком смысле. Ретроспектива необходима и для суждения о том пли ином труде, входящем в сборник. Чем дальше в прошлом расположена работа, тем проще о ней судить, поскольку при этом можно опираться на проверенные веками оценки многих поколений. Чем ближе к нам расположена работа, тем это суждение становится все более окрашенным субъективизмом личных взглядов и предвзятостью скоротечной интеллектуальной моды. Именно поэтому составитель в этом издании все же исключил труды ныне живущих ученых, хотя прп этом возникают совершенно очевидпые пробелы.

При составлении сборника в центре внимания составителя были вступления, в первую очередь – предисловия, иногда посвящения и введения к крупным монографическим работам, трудам, ставшим поворотными в развитии пауки. Такой подход возможен, по существу, лишь начиная с XVI века, с того времени, когда вместе со становлением современной науки оформилась научная монография. Важным техническим фактором было изобретение книгопечатания: ведь труд «Об обращении небесных сфер» Коперника был издан всего лишь через 83 года после напечатания Гутенбергом его первой 46‑строчной Библии (1460 г.).

В XVII веке существенную роль сыграло появление научных журналов, издававшихся основанными тогда научными обществами и Академиями наук. До этого обмен информацией между учеными в основном происходил путем переписки. Это не только очень ограничивало круг корреспондентов, но само качество научных сообщений было ипым. Появление научной периодики, когда формирование научных идей стало публичным, подняло на новую ступень требования к работам, и тогда стали вырабатываться приемы написания научной статьи, которые до сих пор являются общепринятыми. Как правило, научному мемуару предшествуют введения, и составитель в ряде случаев находил в них полезный и интересный материал.

Составитель уже отмечал неизбежную неполноту представленной выше картины развития науки. Помимо промахов самого составителя и чисто случайных обстоятельств, влияющих уже на само качество предисловий и вступлений, есть один момент, который представляется существенным. В основе естествознания лежит научный факт, открытие пового явления, опыт. Однако само оформление открытий редко происходит путем написания капитального мемуара или книги. В физике, напрпмер, наиболее яркие, и потому неожиданные открытия, часто об‑народовались в виде краткого сообщения, и только по прошествии времени возникало все более глубокое понимание важности свершившегося. Так было при открытии Эрстедом связи электричества и магнетизма, при открытии лучей Рентгена и радиоактивности. Если мы обратимся к этим работам, то мы не найдем в них интересных введений. Более того, интуитивный склад ума экспериментатора, часто более свободный от каких‑либо формализованных представлений и теорий, не способствует тому, чтобы такой ученый искал повод для выражения методов и мотивов своей работы. Во всяком случае, такие ученые делали это более сдержанно, чем авторы следующего за ними эшелона, что никоим образом не умаляет ни их заслуг, ни величия их подвига, ибо без фактов и наблюдений, как бы они ни были иногда малы, никогда не было бы всей последующей работы теоретиков.

Действительно, ученый обращается к жанру научной монографии на следующей ступени тогда, когда он от фактов переходит к их обобщению, и от частных гипотез идет к созданию более полной теории. Может быть поэтому при первом знакомстве с данным сборником у читателя может создаться впечатление, совершенно превратное впечатление, о некотором примате теории над экспериментом. Однако ничто не может быть более ложным, и надо надеяться, что глубокое прочтение этой антологии служит тому веским доказательством.

Научный метод познания Мира, основанный на диалектическом взаимодействии опыта и теории, при всем разнообразии индивидуальных черт ученых, отражен в единстве и преемственности всего содержания сборника.

Основные понятия, возникновение которых мы проследили, по существу должны быть известны любому образованному человеку из учебников средней школы или первых курсов высшей: именно поэтому мы можем теперь отвлечься от основного содержания рассматриваемых книг и раэвить подход, лежащий в основе составления этой книги. Это соображение также лежит в основе отказа составителя от каких‑либо подробных комментариев к материалам сборника. С другой стороны, следует напомнить и о прямом назначении предисловий. Может быть, для некоторых читателей возникнет потребность знакомства с тем сочинением, которое они предваряют.

Тем, кто не найдет среди авторов имен, имеющих, казалось бы, драво быть представленными, надо со всей четкостью понять, что составитель на первое место ставил конкретные труды, а не фамилии. Этот сборник надо рассматривать как последовательную попытку создать образ научного метода, а не как цитатник, иллюстрирующий некую мысль: модель науки может уже следовать из этого материала.

Как уже отмечалось, сборник посвящен развитию естествознания. Основу современной науке о природе дает физика, и поэтому физике уделено столь заметное место. В самой физике составителя больше всего привлекало развитие механики, лежащей в основе наших представлений о пространстве, времени, материи. Очевидно, что механику следует понимать более широко – в нее теперь необходимым образом входят электродинамика, квантовая механика, теория относительности, решающие те же проблемы, которые во времена классики были уделом собственно самой механики. Развитие же молекулярной физики, физики твердого тела, жидкостей нами затронуто лишь на их начальных этапах, а все, что относится к прикладной механике, динамике твердого тела, гидродинамике, пришлось полностью исключить.

В сопредельных науках, в частности в химии, составитель также остановился на тех трудах, которые являются определяющими для развития ее главных понятий, понятий, стоящих на границе с физикой. Поэтому вопросам чисто химическим, таким как органическая химия, теория строения, уделено недостаточно внимания. К сожалению, по отмеченным выше соображениям исторической перспективы вне нашего внимания оказалась квантовая химия, не говоря уже о некоторых основных работах по квантовой механике.

В биологии составитель сосредоточил свое внимание на проблеме эволюции и ее механизме, раскрытом генетикой. Физиология и патология выделены не только как научные основы медицины. Физиология дает нам метод решения элементарных задач биологии, указывая путь к раскрытию механизма биологических явлений. Следует отметить, что вне рассмотрения оказались также основные события, связанные с созданием представлений молекулярной биологии. Однако читатель может проследить пути, которые в столь недавнем прошлом привели к возникновению современных представлений о механизме наследственности и работе клетки, когда объединенными усилиями генетиков и физиологов, биохимиков и физиков были решены некоторые основные проблемы науки о жизни. С другой стороны, мы видим, что проблемы сознания, поведения и памяти пока еще не нашли своего решения, и мы еще только нащупываем отдельные подходы к этим вопросам.

Следуя тому же методу, рассматривались науки о Земле и Космосе, когда имепно на работах, направленных на поиски физических процессов развития мира, сконцентрировано основное внимание. В представленной картине развития наук о Земле остались не отраженными труды двух выдающихся геологов XIX века Лайеля и Зюсса, не давших достаточно сжатых вступлений ни к «Основам геологии», ни к «Лику Земли», трудам, оказавшим в то же время большое влияние на развитие геологии. По соображениям объема пришлось также оставить за пределами сборника геофизику, метеорологию и сейсмологию, описательную географию.

Несколько слов о математике. В этом сборнике мы не находим работ Паскаля и Лейбница, Вейерштрасса и Римана, Галуа, Чебышева, Кантора, Лебега,– имена, без которых трудно представить себе сколько‑нибудь полный образ этой науки. По‑видимому, предложенный подход через узловые монографии здесь менее эффективен, чем в других науках, где несомненно так происходит четкий отбор главных событий. Может быть, традиции математиков, традиции их науки таковы, что у них часто пет нужды обращаться к посредничеству вступлений при обращении к своим коллегам и читающей публике.

Таким образом, в сборнике в основном представлены мыслители и ученые, которые в своих трудах дали широкие обобщения, сформулировали новые направления в науке. Недаром многие из представленных в сборнике книг справедливо считаются основополагающими для целых отраслей знаний. Совокупностью таких трудов в первую очередь определяются узлы остова наших основных представлений о природе, которые в итоге дают человеку синтетическую картину мира. Отметим, что можно проследить четкую параллель между появлением новой парадигмы в смысле Т. Куна и рядом избранных выше сочинений.

Каждому поколению известны авторы, написавшие обзорные книги, учебные курсы, оказавшие большое влияние на современников. Таков в XVII веке Мерсенн, в XVIII веке мы вспоминаем имена Мушенбрука, Еургаве и Бюффона; Био и Юнга – в XIX веке. Можно было бы думать, что такпе ученые, известные энциклопедичностью своих знаний, могли бы предварять свои всеохватывающие сочинения содержательными вступлениями. Однако опыт показывает, что этого не происходит. По‑видимому, та независимость мышления – общая и наиболее сильная черта всех тех, кто представлен в этой книге, в меньшей степени принадлежит тем ученым, которые подчинили свой талант эрудиции и у кого самостоятельность мышления отягощена часто избыточным бременем знаний. Именно тогда, когда мы обращаемся к работам ученых, известных, в первую очередь, собственными оригинальными творческими достижениями, мы находим интересные предисловия к их курсам и лекциям.

Особенно интересны книги, написанные в результате прочтения лекционного курса. Подобные книги начали появляться начиная с XIX века, и их возникновение, несомненно, связано с развитием светского высшего образования. Так было после Великой Французской революции, когда были основаны Политехническая и Нормальная школы, так было тогда, когда были созданы технические и медицинские учебные заведения, появившиеся, в первую очередь, в континентальной Европе после так называемой промышленной революции. При этом и старым университетам, где учебный процесс был больше основан на догматическом подходе к классикам давно минувших дней, пришлось перестраивать свою деятельность, откликнуться на новые требования общественного развития.

Представленный в сборнике материал дает возможность проследить тесную связь между развитием науки и высшим образованием. Мы видим сотрудничество исследовательских институтов и университетов, кли‑пик и медицинских академий. Эта связь необходима для нормального развития науки. Потребность в воспитании учеников и последователей дает сильнейший повод ученым для написания сочинений, появление которых служпт в то же время важным каналом связи науки и общества. Действительно, на уровне интеллектуальных стандартов рассматриваемых работ то, что принято называть внедрением результатов научных исследований, часто наиболее действенно происходит через учеников, воспитанных учеными, через научную школу, созданную учителем, через труды, представленные выше. Именно так обеспечивается преемствен‑пость знаний и культуры, примеры которой легко найти в сборнике.

Как уже отмечалось, в этот сборник не вошли труды, связанные с практическими исследованиями, с прикладными науками. Действительно, ознакомление с такими книгами показывает, что в них редко можно найти предисловия, которые по своему уровню могли бы соседствовать с отобранными выше. Поэтому в сборник вошли фрагменты из сочинений, посвященных тому, что иногда называется «чистой наукой». Но ничто так не определяет практические возможности науки, как ее достижения в области отвлеченного знания. Каждому из приведенных примеров можно незамедлительно указать на конкретные практические последствия этих исследований. Представленные же сочинения связаны с высшими проявлениями творческого гения человека. Мотивы, управляющие учеными, сложнее и глубже той простой и непосредственной пользы, которую можно извлечь из знаний. Удовлетворение фундаментальных духовных интересов человека – создание картины мира и постоянный поиск законов его развития – вот что вело и ведет людей по пути, который мы проследили на протяжении последних пяти веков. Решение даже малого вопроса на грандиозном поприще науки, когда часто единственной и высшей наградой является духовное удовлетворение от процесса познания,– вот что ищет человек и что он стремится передать другим в вечной эстафете знаний.

Расположение материала по отделам знаний традиционно и следует исторически сложившейся дифференциации знаний. Внутри же каждого раздела составитель следовал хронологии. Однако прп суждении о характере знаний данной эпохи полезно спроектировать содержание так, чтобы сблизить одновременно появившиеся труды, принадлежащие разным отделам, поскольку таким путем можно легко уловить доминирующие в данную эпоху умонастроения. Так, в XVIII веке хорошо видно стремление к точному научпому описанию природы. Недаром с работ Лавуазье, Линнея, Галлера начинаются соответственно современная химия, биология, физиология. Доминирующим мотивом XIX века стала проблема эволюции (Кант, Геттон, Ламарк, Кювье, Дарвин).

Однако в XX в. снова стал существен синтетический подход, столь сильный в прошлом, особенно в XVII в. Но современный синтез проявляется не столько в создании некоей новой метанауки, сколько в характерном для нашего времени развитии проблем на стыках наук. Конкретно это проявляется в том, что в традиционную классификацию уже трудно уложить события современной науки: в какой раздел следует, например, поместить книгу физика Шредингера «Что такое жизнь...», которая в равной мере принадлежит физиологии, генетике и физике? Однако мы видим, что именно на контактах старых дисциплин возникают в настоящем наиболее интересные точки роста науки. Так родились биофизика и биохимия, геофизика, биогеохимия. Еще более широкие границы перекрывают попытки построения новых синтетических дисциплин, из которых, наверное, самой известной является кибернетика. Таким образом цементируется все здание науки, в то время когда центробежные силы специализации стремятся разгородить отрасли знаний о природе на узкие, мало связанные отделы, не имеющие, казалось бы, ничего между собой общего, кроме как свой главный объект.

Знакомство с предисловиями ставит перед нами вопрос об их форме и стиле. Удивительно то, насколько их стиль и форма мало изменились за рассматриваемый период по сравнению со способом изложения основного содержания работ. На смену геометрическому методу, унаследованному от античных классиков, пришел аналитический метод. Наглядные же графические образы играют теперь все большую роль в представлении информации. За истекшие века необычайно обогатился наш научный язык. Однако эти изменения менее всего коснулись вступлений; по существу современные предисловия пишутся по тем же канонам и почти теми же словами, что и 400 лет тому назад, когда и сейчас перед автором стоят те же задачи, что и тогда: всегда на нескольких страницах он должен для широкого крута читателей дать свое credo. Эти обстоятельства ставят всех авторов в равное положение перед читателем и придают ту удивительную однородность всему материалу сборника, на которую нельзя не обратить внимания.

Заслуживает внимания поэтика предисловий, рассматриваемых как литературные произведения. Замкнутые по форме, они имеют свою экспозицию и концовку. Именно поэтому эти фрагменты могут существовать сами по себе и, будучи оторванными от основного текста, они мало что теряют. Предисловия часто пишутся отдельно, тогда, когда автор уже сам смотрит на свое сочинение несколько со стороны, перед тем как выпустить его в свет. Это нашло свое отражение в издательском приеме пагинации предисловий, страницы которых обычпо отмечены римскими цифрами, и в авторской традиции датировки. Однако важнее всего то, что этим нескольким страницам автор уделяет исключительное внимание и поэтому их следует принимать как наиболее ответственные документы истории науки. Это нашло свое отражение в том, что предисловия несомненно цитируются чаще, чем основное сочинение. С другой стороны, многие из этих научных миниатюр можно рассматривать как лучшие и высшие образцы научной прозы, когда‑либо написанные. Последнее обстоятельство заставляет уделить много сил и внимания их переводам. Переводы же, заимствованные из других изданий, в большинстве своем сделаны или отредактированы крупными отечественными учеными, среди которых мы находим академиков Н. И. и С. И. Вавиловых, А. Н. Крылова, Д. Н. Прянишникова, К. А. Тимирязева, А. Ф. Иоффе и многих других. Следует заметить, что и собственные труды этих выдающихся ученых содержат интересные предисловия. Однако в них, так же как и в ряде других весьма значимых сочинениях, предисловия не в полной мере отвечают плану книги.

Законченность предисловий по существу не допускает их сокращения. В тех же редких и всегда оговоренных выше случаях, когда только лишь из соображений объема составитель вынужден был сокращать текст, это всегда делалось так, чтобы не нанести ущерба ни мыслям автора, ни интересам читателя. В случаях, когда составитель обратился к введениям, естественно, что сам процесс цитирования больше нарушал ткань авторского изложения.

При работе с материалом составитель не мог не обратить внимание на то, что основной интерес представляют предисловия к первым изданиям. Написанные тогда, когда автор еще не подвержен воздействию последствий своей работы, в предисловии к первому изданию он полнее всего раскрывает свои намерения, не пытаясь что‑либо оговорить и исправить, как это постоянно бывает в переизданиях. Более того, есть ряд случаев, когда наибольший интерес представляет предисловие даже не к общепризнанному главному труду, а к тому, который ему предшествовал, но в котором уже нашли свое выражение основные мысли автора. Несомненно, предисловия могут служить ценным источником к познанию психологии творчества ученого и дают материал для суждения о типе и масштабе его мышления. Заметим, что предисловия, являясь в высшей степени личным посланием автора, в преобладающем большинстве случаев написаны от первого лица.

Предисловия часто становились ареной жестоких идеологических схваток. Укажем на предисловие издателя к труду Коперника, где благочестивый лютеранский монах Осиандер стремился представить теорию Коперника лишь как удобный способ описания солнечной системы, а не как истинную картину мира. Напомним о гневном предисловии Котса к третьему изданию «Начал», где молодой ученик Ньютона выступает против картезианства и Лейбница.

Наконец, мы обратим внимание на то, что вся совокупность материала книги приводит к убеждению о глубокой связи человеческих чувств и мыслей. Именно тогда, когда мы приближаемся к пх высшим проявлениям, то в поэзии науки и драме идеи мы видим, что расстояние между типом мышления ученого точных наук и образным мышлепп‑ем художника, что принято называть двумя культурами, совсем не так велико, как это иногда представляют. Хотелось бы надеяться, что настоящий сборник поможет преодолению этпх рубежей, возникших, быть может, из‑за стремительности роста самой культуры, тогда когда в ее разделении сталп искать оправдание недостаточной полноты.

В этом сборнике составитель ограничил себя естественными науками. Однако пичто не мешает применить развитый подход и к другим областям. Более того, даже в художественной литературе писатели часто обращаются к предисловиям и выражают в них свои точки зрсиия на те или иные общие вопросы. Примером может служить предисловие Виктора Гюго к его исторической драме «Кромвель»: этот страстный манифест французской романтической литературы пережил саму пьесу, которая написана по там же приведенным эстетическим установкам. Поучительно сравнение предисловий к книгам по истории, где авторы со времен Фукидида традиционно формулируют свое мировоззрение и метод. Так, каждый, кому интересен подход к русской истории, с пользой прочтет предисловия Н. М. Карамзина или С. М. Соловьева к их известным книгам по истории России.

Большой интерес представляют предисловия к трудам в области экономики. Читателю можно посоветовать ознакомиться с двумя страница‑ми, которыми Адам Смит предваряет свое «Исследование о причинах и природе богатства народов». Классическим является предисловие Карла Маркса «К критике политической экономии», где на пяти страницах дано непревзойденное по ясности и совершенное по форме краткое изложение сущности исторического материализма.

Методологическая цеппость собранного выше материала очевидна. Более того, именно эта сторона в трудах классиков науки представляет для нас сегодня особый интерес. Содержание избранных сочинений давно уже стало достоянием пе только науки, оно вошло в плоть и кровь нашей материальной и духовпой культуры. Однако непреходящее значение имеют документальные свидетельства о мотивах и методах работы ученых минувших дней, ц если составителю удалось достаточно убедительно иллюстрировать величественный путь, пройденный наукой за последние пятьсот лет, то он будет считать свою задачу выполненной.

Сочинения, представленные в сборпике, никоим образом не являются редкими. Болев того, преобладающее большинство трудов вышло в виде отдельных изданий на русском языке и снабжено, как правило, обширными комментариями, а также биографиями авторов, написанными видными учеными. Особенно выделяются великолепно изданные Академией наук СССР книги серии «Классики науки», выходящей с 1947 г., и начатой еще до первой мировой войны серии «Классики естествознания». Большинству авторов посвящены также отдельные исследования и биографии. Не указывая всех использованных материалов, составитель хотел бы отметить большую роль, которую сыграли для него «Большая Советская Энциклопедия» (2‑е издание было также принято за нормативное при транскрипции имен). Наконец, неоценимую помощь составителю оказали как фонды, так и справочный аппарат Библиотеки Академии наук в Ленинграде и Библиотега им. В. И. Ленина в Москве. Без помощи этого величайшего книгохранилища мира, а с другой стороны, и его скромной сестры – библиотеки Института физических проблем АН СССР, работа составителя была бы вряд ли возможна.

При подборе материала по биологическим проблемам большую помощь оказали советы академиков В. А. Энгельгардта и П. К. Анохина. Составитель также благодарен академику Б. М. Кедрову за поддержку и внимание к работе и подробное обсуждение рукописи в Институте истории естествознания и техники АН СССР.

Большинство текстов сверены с оригинальными изданиями, и во многих случаях были внесены необходимые поправки и дополнения. Четвертая часть всех вступлений была переведена специально для этого издания. Составитель хотел бы отметить помощь Л. А. Вайнштейна, взявшего на себя также труд перевода с немецкого интереснейшего введения к «Astronomia Nova» Кеплера, и Ф. А, Петровского, сверившего этот перевод с латинским оригиналом; составитель благодарен М. Е. Сер‑гиенко за перевод с латинского вступления к труду Галлера, И. Н. Веселовскому – за перевод Герике, В. Ф. Шухаевой –за помощь в переводах с французского, Е. В. Смоляницкоп – за переводы с немецкого и содействие в организации работы над книгой, Н. Г. Эл кониной, Ю. И. Матвееву, Ю. Г. Зайончику и Ф. С. Капица – за большую помощь в оформлении рукописи.

При отборе портретов составитель стремился использовать рисунки и гравюры, изображающие авторов в том возрасте, когда опи писали приведенный нами труд. В подборе портретов составитель использовал знаменитую коллекцию гравюр Государственного Эрмитажа в Ленинграде, гравюры Музея изобразительных искусств им А. С. Пушкина и собрания портретов ученых в Ипститутс истории естествознания и техники в Москве, Института истории науки в Штутгардте, Немецкого Музея в Мюнхене, Кавендшпской лаборатории в Кембридже и, наконец, собрание портретов ученых, находящееся у академика П. Л. Капица.

Учитывая всю сложность представленного издания как первой попытки такого подхода к прошлому науки, составитель был бы очень обязан за замечания и предложения читателей, которые следует направлять по адресу: Москва В‑334, Воробьевское шоссе, 2, Институт физических проблем АН СССР.