Техническая диагностика. Диагностирование и техническое обслуживание машин

ЛЕКЦИЯ 1

ОСНОВЫ ТЕОРИИ ТЕХНИЧЕСКОЙ ДИАГНОСТИКИ

1. Общие понятия и определения

Задачи технической диагностики

Техническая диагностика определяет состояние, в котором находится технический объект (устройство, система).

Под состоянием технического объекта понимается совокупность его параметров (значения сигналов, возможность выполнять те или иные функции). Параметры делят на основные (характеризуют выполнение системой заданных функций) и вспомогательные (удобство эксплуатации, внешний вид и проч.).

Различают четыре вида состояний объекта :

    исправное (система соответствует всем, предъявляемым к ней требованиям, т.е. все основные и вспомогательные параметры находятся в пределах заданной нормы );

    неисправное (система не соответствует хотя бы одному из предъявляемых к ней требований);

    работоспособное (все основные параметры системы находятся в пределах заданной нормы );

    неработоспособное (хотя бы один основной параметр системы не соответствует заданной норме).

Определения на языке теории множеств:

Полное множество состояний системы:

где – множество исправных состояний системы;

– множество неисправных, но работоспособных состояний;

– множество неисправных и неработоспособных состояний.

Множества состояний работоспособных и неисправных систем соответственно

,

Системы строятся таким образом, чтобы при всех наиболее вероятных отказах ее элементов был невозможен переход из множества в , а система оказывалась бы в множестве (пример: отказ маршрутного набора в МРЦ, не приводит к потере работоспособности).

Объект, у которого определяется техническое состояние, называется объектом диагноза .

Диагноз есть процесс исследования объекта диагноза. Результат диагноза – это заключение о состоянии объекта диагноза.

Типы задач по определению состояния технических объектов:

    диагноз – определение состояния, в котором находится объект в настоящий момент времени (проверка работоспособности, исправности, поиск неисправностей, испытание ЖАТС);

    прогноз предсказание состояния , в котором окажется объект (эксплуатация ЖАТС, включающая определение периодичности профилактического обслуживания и ремонтов);

    генез – определение состояния, в котором находился технический объект ранее (определение причин отказов);

При решении задач прогноза и генеза всегда приходится решать и задачу диагноза.

Требования к объектам исследования технической диагностики:

    могут находиться, по крайней мере, в двух взаимоисключающих и различимых состояниях (работоспособном и неработоспособном и др.);

    в них можно выделить элементы, каждый из которых подчиняется пункту 1.

Задачи диагноза :

Эквивалентными называются такие неисправности , которые нельзя отличить друг от друга при принятом способе диагноза. Число классов, определяющее степень детализации поиска, называется глубиной поиска (диагноза)

Тесты и системы диагноза

Объект диагноза ОД представляют в виде устройства (см.рис.1), имеющего входы и доступные для наблюдения выходы.

Объекты диагноза делят на:

    непрерывные (аналоговые) (значения сигналов принадлежат непрерывным множествам и время непрерывно);

    дискретные (значения сигналов задаются на конечных множествах, а время дискретно);

    гибридные .

Кроме того, ОД бывают:

    комбинационные (без памяти) (в них выходной сигнал взаимнооднозначно соответствует комбинации входных);

    последовательностные (с памятью) (в них выходной сигнал зависит не только от значений входных, но и от времени).

Процесс диагноза представляет собой последовательность операций (проверок)
, каждая из которых предусматривает подачу на входы объекта некоторого воздействия и определения на выходах (рабочих, либо дополнительных контрольных) реакции на это воздействие.

Любая диагностическая процедура обязательно связывается с определенным, строго фиксированным списком неисправностей, обнаружение которых обеспечивается при ее проведении.

Совокупность проверок, позволяющих решать какую-либо из задач диагноза, называется тестом :
, а число входящих в него проверок – длиной теста .

По назначению тесты бывают:

Полнота обнаружения неисправностей – это доля гарантированно обнаруживаемых неисправностей относительно всех рассматриваемых неисправностей объекта.

По полноте обнаружения неисправностей различают следующие виды тестов:

По длине тесты делят на:

    тривиальные – содержат все возможные для данной системы проверки, предусматривает полное моделирование работы устройства и имеет максимальную длину;

    минимизированные (наиболее распространены);

    минимальные – содержит минимальное число проверок по сравнению с другими тестами для данного устройства, но требует больших вычислений.

В основе процедуры диагноза лежит алгоритм , который представляет собой совокупность последовательности элементарных проверок и правил анализа результатов этих проверок.

Алгоритм диагноза (измерение и анализ ответов, а иногда и формирование тестовых воздействий) реализуется специальными устройствами – средствами диагноза СД . Взаимодействующие между собой объект диагноза и средства диагноза образуют систему диагноза .

Различают два вида систем диагноза:

1.Системы тестового диагноза . В них тестовые воздействия ТВ на ОД поступают только от СД. Данные системы позволяют выбирать состав и последовательность тестовых воздействий исходя из условий эффективной организации процесса диагностирования, в частности в зависимости от ответов объекта на предыдущие воздействия.

2. Системы функционального диагноза не формируют воздействий на ОД. На ОД и СД поступают только рабочие воздействия РВ, предусмотренные рабочим алгоритмом функционирования объекта. Система диагноза работает в процессе рабочего функционирования ОД и решает задачи проверки правильности функционирования и поиска неисправностей.

В конечном итоге процедура диагноза сводится к сравнению работы идеального устройства (задается моделью ОД) и реального исследуемого устройства.

Таким образом, для проведения процедуры диагноза требуется решать следующие основные задачи :

    выбор и построение модели ОД;

    синтез теста;

    построение алгоритма диагноза;

    синтез и реализация средств диагноза.

2. Модели объекта диагноза

Для построения тестов и алгоритмов диагноза необходимо иметь формальное описание объекта и его поведения в исправном и неисправном состояниях – математическую модель диагноза.

Различают модели с явным и неявным описанием неисправностей.

Явная модель объекта диагноза состоит из описаний его исправной и всех неисправных модификаций.

Неявная модель объекта диагноза содержит описание исправного объекта, математические модели его физических неисправностей и правила получения по ним всех неисправных модификаций объекта.

Таблица функций неисправностей (ТФН) является универсальной математической моделью объекта диагноза (пригодна для описания объектов любой природы, как аналоговых, так и дискретных) и принадлежит к классу явных моделей.

Составление таблицы ТФН.

В строках таблицы указывают все возможные проверки , которые могут быть использованы в процедуре диагностирования. Графы таблицы соответствуют исправному и всем возможным неисправным состояниям:
. Каждое неисправное состояние соответствует одной неисправности (одиночной или кратной) из заданного класса неисправностей, относительно которого строится тест. На пересечении -ой графы и -ой строки проставляется результат -ой проверки для системы, находящейся в -м состоянии.

Проверка

Результат проверки для системы, находящейся в состоянии

Тема 1. Цели и задачи технического диагностирования оборудования План лекции

1.1. Основные понятия и определения технической диагностики

1.2. Показатели контролепригодности изделий АТ

1.3. Показатели диагностирования

1.3.1. Вероятность ошибки диагностирования

1.3.2. Вероятность правильного диагностирования и апостериорная вероятность ошибки диагностирования

1.3.3. Средняя продолжительность, средние трудозатраты и средняя стоимость диагностирования

1.4. Системы диагноза технического состояния

1.5. Объекты диагноза

Заключение

1.1. Основные понятия и определения технической диагностики

Одним из основных видов деятельности выпускников специальностей ЭНС и АТС является систематический контроль технического состояния оборудования. В специальной литературе контроль технического состояния принято называть технической диагностикой. Техническая диагностика является важнейшей составной частью технической эксплуатации специальностей ЭНС и АТС, способствующей наряду с теорией надежности повышению эффективности применения специального оборудования.

Термин «диагностика» происходит от греческого «диагностикос», что означает распознавание, определение. В процессе диагностирования изделию обычно ставится диагноз - то есть определяется его техническое состояние с указанием места, вида и причины дефекта (если он есть). Диагноз представляет собой процесс исследования объекта. Объект, состояние которого определяется, будем называть объектом диагноза . Характерными примерами результатов диагноза состояния технического объекта являются заключения вида: объект исправен, объект неисправен, в объекте имеется какая-то неисправность.

Таким образом, диагностика есть отрасль знаний, включающая в себя теорию и методы организации процессов диагноза, а также принципы построения средств диагноза. Когда объектами диагноза являются объекты технической природы, говорят о технической диагностике.

Техническая диагностика решает три типа задач:

Задача диагноза (задачи по определению состояния, в котором находится

объект в настоящий момент времени). Это техническая диагностика;

Задача прогноза (от греческого «прогнозис» - предвидеть, предсказывать.) Предсказание состояния, в котором окажется объект в будущий момент времени. Это техническая прогностика;

Задача генеза («генезис» - происхождение, возникновение.) Определение состояния, в котором находился объект в некоторый момент времени в

прошлом. Это техническая генетика.

Задачи технической генетики возникают в связи с расследованием причин аварий и катастроф, когда настоящее состояние объекта отличается от состояния, в котором он оказался в прошлом в результате появления первопричины, вызвавшей аварию. Задача технической прогностики - определение срока службы оборудования, или определение периодичности проверок и ремонтов.

Техническая диагностика представляет собой основу технической генетики и технической прогностики, и последние развиваются в тесной взаимосвязи с первой.

Одной из важнейших задач диагноза состояния объекта является поиск неисправностей , т.е. указание мест и, возможно, причин возникновения неисправностей. Поиск неисправностей необходим для выявления и замены неисправных компонентов. После устранения неисправности объект становится исправным, работоспособным или правильно функционирующим.

В результате эксплуатации оборудование может находиться в одном из следующих технических состояний:

Исправном (изделие соответствует всем требованиям нормативнотехнической документации);

Неисправном (изделие не соответствует хотя бы одному требованию нормативно-технической документации);

- работоспособном (значения всех параметров, характеризующих способность выполнять заданные функции на всех режимах, соответствуют требованиям нормативно-технической документации);

- неработоспособном (значение хотя бы одного параметра, характеризующего способность выполнять заданную функцию, не соответствует требованиям нормативно-технической документации);

- функционирующем (значение всех параметров, характеризующих способность выполнять заданные функции на проверенных режимах, соответствуют требованиям нормативно-технической документации);

- нефункционирующем (значение хотя бы одного параметра, характеризующего способность выполнять заданные функции на проверенных режимах, не соответствует требованиям нормативно-технической документации).

Исправное и все неисправные состояния объекта образуют множество Е его технических состояний. Задачи проверки исправности, проверки работоспособности, проверки правильности функционирования и поиска неисправностей представляют собой частные случаи общей задачи диагноза технического состояния объекта.

На рис. 1 множество технических состояний объекта диагноза условно ограниченно замкнутой кривой, причем исправное состояние обозначим кружком, неисправное - крестиками. Результатами проверки исправности (а) проверки работоспособности (б) и проверки правильности функционирования (в) является получение двух подмножеств технических состояний. Одно из них (левое) содержит только исправное состояние или те неисправные состояния, находясь в которых объект остается работоспособным или правильно функционирующим. Второе подмножество содержит либо все неисправные состояния (при проверке исправности), либо такие, пребывание в которых делает объект неработоспособным или неправильно функционирующим.

Результатами поиска неисправностей (рис. 1 г, д, е) являются разбиения на классы не различаемых между собой неисправных состояний вторых подмножеств. Число классов и, следовательно, числа входящих в них неисправных состояний определяют достигаемую при поиске степень детализации мест и состава имеющихся (или подозреваемых на наличие) в объекте неисправностей. Эту степень детализации принято называть глубиной поиска или глубиной диагноза.

Рис. 1. Представление задач диагноза через разбиения множества технических состояний объекта

Заметим, что при проверке правильности функционирования и при поиске неисправностей, нарушающих правильное функционирование объекта, разбиения относятся к определенному (настоящему) моменту времени и поэтому могут быть разными для разных моментов времени и разных режимов работы объекта.

Диагноз технического состояния объекта осуществляется при помощи тех или иных средств диагноза. Взаимодействующие между собой объект и средства диагноза образуют систему диагноза . Протекающий в системе диагноза процесс в общем случае представляет собой многократную подачу на объект определенных воздействий (входных сигналов ) и многократное измерение и анализ ответов (выходных сигналов ) объекта на эти воздействия. Воздействия на объект либо поступают от средств диагноза, либо являются внешними (по отношению к системе диагноза) сигналами, определяемыми рабочим алгоритмом функционирования

объекта. Измерение и анализ ответов объекта всегда осуществляются средствами диагноза .

В качестве количественных и качественных характеристик технических состояний изделия обычно используются контролируемые параметры с установленными нормативами по допустимому изменению их численных значений. Например, объектом диагноза является электрический кабельный жгут. По качественным показателям он оценивается по проверке правильности распайки (монтажа) проводов. Количественно он оценивается по сопротивлению изоляции между разными цепями.

По каждому из перечисленных параметров в эксплуатационной документации указываются порядок соединения проводов и предельно допустимые значения, т. е. по соответствию или несоответствию численных значений параметров установленным требованиям можно однозначно определить техническое состояние.

Под параметром в технической диагностике понимают наименование какойлибо физической величины, устанавливаемой для отличия данного состояния от других состояний объекта контроля.

Помимо параметров для оценки технического состояния объектов в технической диагностике используется понятие - признак состояния .

Под признаком состояния понимают значение (или интервал значений) какоголибо параметра, устанавливаемого для отличия данного состояния от других состояний. Смысловым эквивалентом признака состояния является значение параметра (входной сигнал на реле составляет 27 Вольт напряжение в Вольтах - это параметр, а ее выражение в числе - это значение параметра).

Техническое диагностирование объектов представляет собой процесс исследования последних. Результатом этого исследования является заключение о техническом состоянии объекта с указанием вида технического состояния, а также, при необходимости, вида, места и причины неисправности.

По каждому контролируемому параметру в эксплуатационной документации указывается нормативное значение, чаще всего соответствующее состояниям: функционирования, работоспособности или исправности. Реже указываются нормативы параметра для нефункционирующего, неработоспособного или неисправного состояний.

Нормативные значения параметров могут указываться в виде:

числа с указанием размерности (например, 5 А);

диапазона чисел с указанием размерности (2…4 мВ);

номинального значения числа с указанием его допуска и размерности

(27+ − 5 5 В).

В эксплуатационной документации наряду с параметром, и его значением также указывают и условия, диагностическую аппаратуру, а иногда - технологию контроля и интерпретации результатов контроля.

1.2. Показатели контролепригодности изделий

Важным аспектом технической диагностики является оценка контролепригодности изделий. Контролепригодность – свойство изделия обеспечивать достоверную оценку его технического состояния и раннее обнаружение неисправностей и отказов. Контролепригодность обеспечивается конструкцией изделия и принятой системой технической диагностики.

Контролепригодность изделия задается на стадии разработки и обеспечивается на стадии производства. Возможности улучшения контролепригодности в условиях эксплуатации практически отсутствуют.

В качестве показателей контролепригодности используются:

коэффициент полноты проверки исправности (работоспособности,

функционирования)

К ПП = λ К λ 0 ,

где λк - суммарная интенсивность отказов проверяемых составных частей изделия; λо - суммарная интенсивность отказов всех составных частей изделия;

коэффициент глубины поиска дефекта (повреждения)

К ГП = F R ,

где F - число составных частей изделия, с точностью до которых определяется место дефекта; R - общее число составных частей изделия, с точностью до которых требуется определение места дефекта;

среднее время подготовки изделия к диагностированию заданным числом специалистов

Т В = Т УСЛ + Т МДР ,

где Т УСЛ среднее время установки и снятия измерительных устройств, необходимых для диагностирования; Т МДР - среднее время монтажно-демонтажных работ на изделии, необходимых для подготовки к диагностированию (вскрытие люков, разъемов, снятие блоков и т.д.);

средние трудозатраты на подготовку изделия к диагностированию

Q B = Q УСЛ + Q МДР ,

где Q УСЛ - средние трудозатраты на установку и снятие измерительных устройств, необходимых для диагностирования; Q МДР - средние трудозатраты на монтажно-демонтажные работы на изделии, необходимые для подготовки к диагностированию (вскрытие люков, разъемов, снятие блоков и т.д.);

коэффициент избыточности изделия

К ИИ = G И − G ИИД ,

где G И - масса составных частей, введенных в конструкцию для диагностирования изделия; G ИИД - масса всего изделия;

коэффициент использования специальных средств диагностирования

К ИС = G СДG − G ССД , СД

где G СД - суммарная масса серийных и специальных средств диагностирования изделия; G ССД - масса специальных средств диагностирования изделия;

коэффициент трудозатрат на подготовку к диагностированию

К ТД = Q Д Q + Д Q В ,

где Q Д - средние трудозатраты на диагностирование изделия; Q В - средние трудозатраты на подготовку изделия к диагностированию;

дифференциальная оценка контролепригодности g i = K i K iб ,

где К i - значение i -го показателя ремонтопригодности (любого из указанных выше) рассматриваемого изделия; К iб - значение i -го показателя ремонтопригодности (любого из указанных выше) базового (эталонного) изделия;

комплексная оценка контролепригодности

g = ∏ (ai gi ) ,

i= 1

где n - количество показателей контролепригодности рассматриваемого изделия; gi - i -ая дифференциальная оценка контролепригодности; a i - коэффициент весомости i -го показателя контролепригодности.

1.3. Показатели диагностирования

Стандартом устанавливаются следующие показатели диагностирования:

- вероятность ошибки диагностирования P ij ;

- апостериорная вероятность ошибки диагностирования P aij ;

- вероятность правильного диагностирования (достоверность контроля) D ;

- средняя оперативная продолжительность диагностирования T Д ;

- средняя стоимость диагностирования С Д ;

- средние оперативные трудозатраты на диагностирование Q Д . Показатели диагностирования определяются при проектировании, испытаниях

и эксплуатации системы диагностирования. Показатели включаются в техническое задание на изделие и нормируются.

1.3.1. Вероятность ошибки диагностирования

В общем случае вероятность ошибки диагностирования Pij вычисляют по формуле

P ij = P oi ∑ P cl P yjil , l= 1

где k - количество технических состояний (далее - состояний) средства диагностирования; P оi - априорная вероятность нахождения объекта диагностирования в состоянии i; P сl - априорная вероятность нахождения средства диагностирования в состоянии l; P yjil - условная вероятность того, что в результате диагностирования объект диагностирования признается находящимся в состоянии j при условии, что он находится в состоянии i и средство диагностирования находится в состоянии l .

По статистическим данным оценку вероятности ошибки диагностирования определяют по формуле

r jil

P ij* = P oi ∑ P cl

l= 1

где N il - общее число испытаний системы диагностирования (диагностирований объекта, находящегося в состоянии i , средством диагностирования, находящимся в состоянии l ); r jil - число испытаний, при которых система диагностирования зафиксировала состояние j.

Для систем диагностирования, предназначенных для проверки работоспособности (то есть при различении только двух состояний объекта диагностирования - работоспособное и неработоспособное) возможны ошибки диагностирования видов (i=1, j=2) и (i=2, j=1).

Очевидно, что при i=1 и j=1 - состояние объекта работоспособное и ошибка диагностирования отсутствует. При i=2 и j=1 – состояние объекта неработоспособное и ошибка диагностирования также отсутствует.

Вероятность ошибки диагностирования вида (1,2) P 12 - это вероятность совместного наступления двух событий: объект находится в работоспособном состоянии, но в результате ошибки диагностирования признан неработоспособным.

Вероятность ошибки диагностирования вида (2,1) P 21 - это вероятность совместного наступления двух событий: объект находится в неработоспособном состоянии, но в результате ошибки диагностирования признан работоспособным. Для рассмотренного частного случая вероятности P 12 и P 21 вычисляются по формулам

P 12 = P o 1 ∑ P cl P y 21l , l = 1

P 21 = P o 2 ∑ P cl P y 12l , l = 1

где P o1 - априорная вероятность нахождения объекта диагностирования в работоспособном состоянии; P о2 - априорная вероятность нахождения объекта диагностирования в неработоспособном состоянии; P у21l - условная вероятность того, что в результате диагностирования объект считается находящимся в неработоспособ-

ном состоянии при условиях, что он находится в работоспособном состоянии и средство диагностирования в состоянии l; P у12l - условная вероятность того, что в результате диагностирования объект считается находящимся в работоспособном состоянии при условиях, что он находится в неработоспособном состоянии и средство диагностирования в состоянии l; P сl - априорная вероятность нахождения средства диагностирования в состоянии l .

1.3.2. Вероятность правильного диагностирования и апостериорная вероятность ошибки диагностирования

Вероятность правильного диагностирования часто называют достоверностью контроля и считают основным показателем диагностирования.

Достоверность контроля - это показатель степени объективного отображения результатами контроля действительного технического состояния изделия.

Вероятность правильного диагностирования (достоверность контроля) D вычисляют по формуле

D = ∑ Pij ,

i = 1

где P ij - вероятность ошибки диагностирования вида (i,j); m - число возможных технических состояний объекта диагностирования (для систем диагностирования, определяющих работоспособное и неработоспособное состояния объекта в целом m = 2 ).

Оценку правильного диагностирования определяют по формуле

D * = ∑ P ij * ,

i = 1

где P * ij - оценка вероятности ошибки диагностирования вида (i,j);

Для распространенного класса систем диагностирования, предназначенных для проверки работоспособности (m = 2), вероятность правильного диагностирования определяют по формуле

D =1 − P 12 − P 21 .

Апостериорную вероятность Pаij вычисляют по формуле

∑ P ij

i= 1

где P ij - вероятность ошибки диагностирования вида (i,j); m - число возможных технических состояний объекта диагностирования (для систем диагностирования, определяющих работоспособное и неработоспособное состояния объекта в целом

m = 2 ); D - вероятность правильного диагностирования.

1.3.3. Средняя продолжительность, средние трудозатраты и средняя

стоимость диагностирования

Среднюю оперативную продолжительность диагностирования в общем случае опре-деляют по формуле

Т Д = ∑ T oi P i , i= 1

где Т i - средняя оперативная продолжительность диагностирования объекта, находящегося в состоянии i . Величина Тi включает продолжительность выполнения как вспомогательных операций, так и собственно диагностирования; P оi - априорная вероятность нахождения объекта диагностирования в состоянии i .

Оценку средней оперативной продолжительности диагностирования выполняют по формуле

Т * Д =

∑∑ T ij P oi ,

g= 1 i= 1

где N - общее число испытаний системы диагностирования (диагностирований объекта); Т ig - оперативная продолжительность диагностирования объекта, находящегося в состоянии i при g -ом испытании.

Средние оперативные трудозатраты на диагностирование в общем случае определяют по формуле

Q Д = ∑ Q ОДi P i ,

i= 1

где Q ОДi - средние оперативные трудозатраты на диагностирование объекта, находящегося в состоянии i .

Оценку средних оперативных трудозатрат на диагностирование выполняют по формуле

Q * Д = 1 ∑∑ N m Q ОДig P i N g = 1 i = 1

где N - общее число испытаний системы диагностирования (диагностирований объекта); Q ОДig - оперативные трудозатраты на диагностирование объекта, находящегося в состоянии i при g -ом испытании.

Среднюю стоимость диагностирования S д вычисляют по формуле

С Д = ∑ C oi P i , i= 1

где C oi - средняя стоимость диагностирования объекта, находящегося в состоянии i. Величина С i включает амортизационные затраты диагностирования, затраты на эксплуатацию системы диагностирования и стоимость износа объекта диагностирования при его диагностировании.

1.4. Системы диагноза технического состояния

На рис.2 представлены обобщенные функциональные схемы системы тестового диагноза и системы функционального диагноза технического состояния. Системы содержат объект диагноза ОД и средства диагноза СД. Схемы даны в «однолинейном» изображении. Физически каждая линия схемы, снабженная стрелкой на конце, может представлять несколько каналов передачи информации.

Как видно из рис.2,а в системах тестового диагноза воздействия на объект поступают от средств диагноза. Поэтому как состав, так и последовательности подачи этих воздействий можно выбирать, исходя из условий эффективной организации процесса диагноза. Более того, каждое очередное воздействие в процессе диагноза может назначаться в зависимости от ответов объекта на предыдущие воздействия. Воздействия в системах тестового диагноза будем называть тестовыми . Тестовые воздействия могут подаваться как в периоды времени, когда объект не используется по прямому назначению, так и в процессе выполнения им его рабочего алгоритма функционирования. Во втором случае, однако, тестовыми воздействиями могут быть только такие сигналы, которые не мешают нормальной работе объекта. Например, при инерционных исполнительных механизмах некоторого функционирующего объекта возможна подача кратковременных импульсных тестовых воздействий на схемы управления этими механизмами.

Тестовые воздей-

воздействия

Результаты ди-

Результаты ди-

Рис. 2. Обобщенные функциональные схемы систем диагноза технического состояния: а)- система тестового диагноза; б)- система функционального диагноза

Тестовые воздействия могут подаваться как на основные входы объекта, т.е. на его входы, необходимые для применения объекта по назначению, так и на дополнительные входы, организованные специально для целей диагноза.

В системах функционального диагноза (рис. 2,б) воздействия, поступающие на основные входы объекта, заданы его рабочим алгоритмом функционирования и поэтому, как правило, не могут выбираться, исходя из условий эффективной организации процесса диагноза. Эти воздействия будем называть рабочими . Указанная на рис.2,б подача рабочих воздействий и на средства диагноза часто имеет место в системах функционального диагноза, хотя и не является обязательной.

Отметим, что системы функционального диагноза могут использоваться также в режимах имитации функционирования объекта. При этом, естественно, должна быть обеспечена имитация рабочих воздействий. Такое использование систем функционального диагноза целесообразно при наладке или ремонте объекта.

Ответы объекта (на тестовые или на рабочие воздействия) в обоих видах систем диагноза поступают (рис. 2) на средства диагноза. Ответы могут сниматься как с основных выходов объекта, т.е. с выходов, необходимых для применения объекта по назначению, так и с дополнительных выходов, организованных специально для целей диагноза. Эти основные и дополнительные выходы часто на-

зывают контрольными точками.

Обратимся теперь к средствам диагноза. Средства диагноза реализуют некоторый алгоритм диагноза, задающий состав и очередность реализации, а также способ анализа результатов элементарных проверок объекта.

Реализация элементарных проверок заключается в выработке и подаче на объект входных сигналов (воздействий) и в приеме и измерении соответствующих выходных сигналов (ответов). Естественно, что для реализации этих операций средства диагноза должны содержать источники воздействий (в системах тестового диагноза), измерительные устройства и устройства связи источников воздействий и измерительных устройств с объектом.

Целью анализа результатов элементарных проверок является получение результатов диагноза, т. е. определение технических состояний, в одном из которых фактически находится объект.

Как было сказано выше, результаты элементарных проверок представлены в виде значений сигналов в контрольных точках. Результаты же диагноза должны быть представлены в иной форме, более удобной для практического их использования. Например, при проверке исправности результатом диагноза должен быть один из ответов: «объект исправен» или «объект неисправен», а при поиске неисправностей - «в объекте неисправна такая-то конкретная компонента (узел, блок, деталь)». Другими словами, требуется расшифровка (анализ, преобразование) результатов элементарных проверок, полученных в процессе реализации алгоритма диагноза.

В простейшем случае такая расшифровка может представлять собой обычное сравнение физических значений сигналов в контрольных точках с заданными эталонными значениями этих сигналов. Заметим, что при недостаточном уровне автоматизации процесса диагноза, в частности, при использовании ручных средств диагноза функции расшифровки результатов элементарных проверок возлагаются на человека.

Так или иначе, для выполнения операций анализа результатов элементарных проверок средства диагноза должны располагать определенной информацией о поведении исправного объекта. Аппаратуру средств диагноза, хранящую информацию о поведении объекта, или другой носитель этой информации будем называть физической моделью объекта . Наглядным примером физической модели объекта является эталонный, заведомо исправный его экземпляр. Однако во многих случаях такая физическая модель информационно избыточна и зачастую трудно реализуема. В широко распространенных системах централизованного контроля, являющихся системами проверки правильности функционирования, физическая модель объекта представляет собой аппаратуру для задания допустимых значений (уставок) контролируемых параметров, а также средства коммутации и подключения этой аппаратуры к устройствам сравнения допустимых значений.

Средства, осуществляющие сопоставление информации об объекте, с фактическими результатами элементарных проверок и вырабатывающие сигнал «ре-

зультаты диагноза», назовем блоком расшифровки результатов.

Наконец, средства диагноза должны иметь тот или иной носитель алгоритма диагноза. Носителем жестких или редко изменяемых алгоритмов диагноза обычно является аппаратура, конструктивно объединенная с остальной аппаратурой средств диагноза. Для задания сменных алгоритмов диагноза часто применяются стандартные программоносители - магнитные барабаны, магнитные ленты, гибкие магнитные диски, жесткие диски и т. п. В последнем случае, естественно, средства диагноза должны содержать соответствующие устройства считывания информации с программоносителей.

Итак, по завершении процесса определения технического состояния объекта средства диагноза вырабатывают сигнал «результаты диагноза». Знание технического состояния объекта может быть использовано для различных целей, в том числе, например, для выбора и применения другого алгоритма диагноза, позволяющего более точно определить техническое состояние объекта.

1.5. Объекты диагноза

Для построения математических моделей объектов диагноза в процессе проектирования и создания систем диагноза необходимо знать физические свойства и характеристики этих объектов.

В получении таких знаний важное место занимает изучение возможных физических неисправностей объекта, а также параметров, характеризующих исправное и все неисправные состояния объекта. При этом полезна классификация объектов по принципу их действия, по назначению, по сложности, по энергетическим и другим признакам. Необходимо также классифицировать неисправности по их видам (например, на производственные и эксплуатационные, на катастрофические и постепенные), определять вероятности или частности, анализировать причины их возникновения, разрабатывать методы определения признаков неисправностей и т.п. Работы по исследованию параметров объектов включают в себя разработку методов задания допусков и определения контрольных соотношений между отдельными параметрами, изучение вопросов точности измерения параметров при диагнозе, определение законов изменения параметров во времени и т.п.

Для построения оптимальных алгоритмов диагноза большое значение имеет организация сбора и обработки статистических данных, особенно по вероятностям возникновения неисправностей и по затратам (времени, энергии, материальных или денежных средств и т. д.) на отыскание неисправностей и их устранение. Отметим, что статистические данные важны не только для оптимизации алгоритмов диагноза, но также для эффективного решения задач технической прогностики и технической генетики.

Объектами диагноза могут быть любые технические изделия, устройства или системы, относительно которых имеет смысл ставить и решать задачи проверки их исправности, работоспособности, правильности функционирования или задачи поиска неисправностей.

Последствия любых явлений или действий, которые переводят объект в некоторое неисправное состояние, называются физическими неисправностями объекта.

Объект может состоять из компонент - функционально или конструктивно выделенных частей. Тогда совокупность компонент объекта, связей между компонентами (внутренних связей) и связей объекта с внешней средой (внешних связей) называют структурой объекта. Понятия исправного и неисправного состояний, а также физической неисправности приложимы к компонентам объекта, его внутреннимивнешнимсвязям.

Взаимодействие объекта с внешней средой осуществляется через его основные и дополнительные входы и выходы. Сигналы на входах и выходах объекта характеризуются параметрами тех физических величин, с помощью которых передаются указанные сигналы. Это - входные и выходные параметры объекта. Часто возникает необходимость рассматривать внутренние параметры объекта, т. е. такие параметры, которые не являются его входными или выходными. Например, необходимо замерить сопротивление резистора, снять напряжение на трансформаторе и т.д.

Последовательности (или, в частном случае, совокупности) возможных значений входных параметров образуют множество возможных воздействий на объект. Аналогично, множество ответов объекта определяется последовательностью (или, в частном случае, совокупностью) значений его выходных параметров.

Таким образом, воздействие на объект (ответ объекта) характеризуется составом входов (выходов) и теми моментами времени, в которые поступают заданные (измеряются получаемые) значения параметров на этих входах (выходах). Последовательность (совокупность) значений указанных параметров можно называть значени-

емвоздействия(ответа).

Элементарная проверка представляет собой некоторый физический эксперимент над объектом и определяется значением воздействия, подаваемого или поступающего на объект, а также ответом объекта на это воздействие. Значение ответа объекта является результатом элементарной проверки. Ясно, что объект, находящийся в разных технических состояниях, может выдать разные результаты одной и той же элементарной проверки. Понятие элементарной проверки применимо также к отдельным компонентам объекта. В этом случае, естественно, предполагается доступность входов и выходов компонент, что может потребовать организации дополнительных входовивыходовобъекта.

Техническая диагностика - молодая наука, возникшая в последние десятилетия в связи с потребностями современной техники. Все возрастающее значение сложных и дорогостоящих технических систем, применяемых при добыче, транспортировке и переработке нефти и газа, требования их безопасности, безотказности и долговечности делают весьма важной оценку состояния системы, ее надежности.

Уровень безопасности связан со свойствами перерабатываемых веществ, режимами и условиями эксплуатации оборудования, его техническим состоянием. Техническая диагностика является одним из основных элементов системы управления промышленной безопасностью в России. Общие требования по безопасности промышленных объектов установлены Федеральным законом Российской Федерации «О промышленной безопасности опасных производственных объектов» № 116-ФЗ от 20 июля 1997 г. Этот закон обязывает организации, эксплуатирующие опасные производственные объекты (к ним относятся все объекты нефтегазовой промышленности), проводить диагностику и испытания технических устройств, оборудования и сооружений в установленные сроки и в установленном порядке. Диагностика, в том числе с использованием методов неразрушающего контроля, может проводиться как самой эксплуатирующей организацией, так и с привлечением специализированной организации (имеющей соответствующую лицензию) в составе экспертизы промышленной безопасности. Надзор за безопасностью потенциально опасных производственных объектов осуществляется государственными надзорными органами: Федеральной службой по экологическому, технологическому и атомному надзору, МЧС, Минэнерго, ГУПО МВД, каждым по своей части.

Техническая диагностика - наука о распознавании состояния технической системы, включающая широкий круг проблем, связанных с получением и оценкой диагностической информации. Термин «диагностика» происходит от греческого слова « », что означает распознавание, определение. В процессе диагностики устанавливается диагноз, т. е. определяется состояние больного (медицинская диагностика) или состояние технической системы (техническая диагностика). Согласно ГОСТ 20911-89, техническая диагностика - область знаний, охватывающих теорию, методы и средства определения технического состояния объектов.

Техн ическая диагн остика изучает и устанавливает признаки дефектов технических объектов, а также методы и средства обнаружения и поиска (указания местоположения) дефектов. Основной предмет технической диагностики - организация эффективной проверки исправности, работоспособности, правильности функционирования технических объектов (деталей, элементов, узлов, блоков, заготовок, устройств, изделий, агрегатов, систем, а также процессов передачи, обработки и хранения материи, энергии и информации), то есть организация процессов диагностирования технического состояния объектов при их изготовлении и эксплуатации, в том числе во время, до и после применения по назначению, при профилактике, ремонте и хранении.


Техническая диагностика – теория, методы и средства определения технического состояния объекта.

Диагностирование - одна из важных мер обеспечения и поддержания надёжности технических объектов.

Техническое диагностирование - определение технического состояния объекта.

Экспертное техническое диагностирование - техническое диагностирование объекта, выполняемое по истечении расчетного срока службы объекта или расчетного ресурса безопасной эксплуатации, а также после аварии или обнаруженных повреждений элементов, в целях определения возможных параметров и условий дальнейшей эксплуатации

Средства технического диагностирования (контроля технического состояния) - аппаратура, методы и программы, посредством которых осуществляется диагностирование (контроль технического состояния)

Система технического диагностирования (контроля технического состояния) - совокупность средств, объекта и исполнителей, необходимая для проведения диагностирования (контроля) по правилам, отраженным в технической документации

Диагностическое обеспечение - комплекс взаимосвязанных правил, методов, алгоритмов и средств, необходимых для осуществления диагностирования на всех этапах жизненного цикла объекта

Программа технического диагностирования (контроля технического состояния) - совокупность предписаний, определяющих последовательность действий при диагностировании (контроле)

Диагностирование технического состояния технологического оборудования может проводиться как функциональное (оперативное), которое выполняется в процессе эксплуатации обрудования, так и экспертное – для длительно проработавших технических устройств, отработавших расчетный срок службы.

Для надежного технического диагностирования необходимо иметь и знать:

1) информацию о свойствах материала с учетом явлений технологического наследования и физико-механического старения;

2) данные о взаимосвязи между свойствами материала и физическими явлениями, на которых основан метод контроля;

3) сведения о физических принципах метода, достоинствах и недостатках, пределе применения каждого из методов;

4) механизм разрушения в физических и механических аспектах;

5) способы регистрации, хранения и обработки дефектоскопических данных.

Техническая диагностика - область знаний, охватывающая теорию, методы и средства определения технического состояния объекта. Назначение технической диагностики в обшей системе технического обслуживания - снижение объема затрат на стадии эксплуатации за счет проведения целевого ремонта.

Техническое диагностирование - процесс определения технического состояния объекта. Оно подразделяется на тестовое, функциональное и экспресс-диагностирование.

Периодическое и плановое техническое диагностирование позволяет:

    выполнять входной контроль агрегатов и запасных узлов при их покупке;

    свести к минимуму внезапные внеплановые остановки технического оборудования;

    управлять старением оборудования.

Комплексное диагностирование технического состояния оборудования дает возможность решать следующие задачи:

    проводить ремонт по фактическому состоянию;

    увеличить среднее время между ремонтами;

    уменьшить расход деталей в процессе эксплуатации различного оборудования;

    уменьшить объем запасных частей;

    сократить продолжительность ремонтов;

    повысить качество ремонта и устранить вторичные поломки;

    продлить ресурс работающего оборудования на строгой научной основе;

    повысить безопасность эксплуатации энергетического оборудования:

    уменьшить потребление ТЭР.


Тестовое техническое диагностирование - это диагностирование, при котором на объект подаются тестовые воздействия (например, определение степени износа изоляции электрических машин по изменению тангенса угла диэлектрических потерь при подаче напряжения па обмотку двигателя от моста переменного тока).

Функциональное техническое диагностирование - это диагностирование, при котором измеряются и анализируются параметры объекта при его функционировании но прямому назначению или в специальном режиме, например определение технического состояния подшипников качения по изменению вибрации во время работы электрических машин.

Экспресс-диагностирование - это диагностирование по ограниченному количеству параметров за заранее установленное время.

Объект технического диагностирования - изделие или его составные части, подлежащие (подвергаемые) диагностированию (контролю).

Техническое состояние - это состояние, которое характеризуется в определенный момент времени при определенных условиях внешней среды значениями диагностических параметров, установленных технической документацией на объект.

Средства технического диагностирования - аппаратура и программы, с помощью которых осуществляется диагностирование (контроль).

Встроенные средства технического диагностирования - это средства диагностирования, являющиеся составной частью объекта (например, газовые реле в трансформаторах на напряжение 100 кВ).

Внешние устройства технического диагностирования - это устройства диагностирования, выполненные конструктивно отдельно от объекта (например, система виброконтроля на нефтеперекачивающих насосах).

Система технического диагностирования - совокупность средств, объекта и исполнителей, необходимая для проведения диагностирования по правилам, установленным технической документацией.

Технический диагноз - результат диагностирования.

Прогнозирование технического состояния это определение технического состояния объекта с заданной вероятностью на предстоящий интервал времени, в течение которого сохранится работоспособное (неработоспособное) состояние объекта.

Алгоритм технического диагностирования - совокупность предписаний, определяющих последовательность действий при проведении диагностирования.

Диагностическая модель - формальное описание объекта, необходимое для решения задач диагностирования. Диагностическая модель может быть представлена в виде совокупности графиков, таблиц или эталонов в диагностическом пространстве.


Существуют различные методы технического диагностирования:

Реализуется с помощью лупы, эндоскопа, и других простейших приспособлений. Этим методом пользуются, как правило, постоянно, проводя внешние осмотры оборудования при подготовки его к работе или в процессе технических осмотров.

Виброакустический метод реализуется с помощью различных приборов для измерения вибрации. Вибрация оценивается по виброперемещению, виброскорости или виброускорению. Оценка технического состояния этим методом осуществляется по общему уровню вибрации в диапазоне частот 10 - 1000 Гц или по частотному анализу в диапазоне 0 - 20000 Гц.


Реализуется с помощью . Пирометрами измеряется температура бесконтактным способом в каждой конкретной точке, т.е. для получения информации о температурном ноле необходимо этим прибором сканировать объект. Тепловизоры позволяют определять температурное поле в определенной части поверхности диагностируемого объекта, что повышает эффективность выявления зарождающихся дефектов.


Метод акустической эмиссии основан на регистрации высокочастотных сигналов в металлах и керамике при возникновении микротрещин. Частота акустического сигнала изменяется в диапазоне 5 - 600 кГц. Сигнал возникает в момент образования микротрещин. По окончании развития трещины он исчезает. Вследствие этого при использовании данного метода применяют различные способы нагружения объектов в процессе диагностирования.

Магнитный метод используется для выявления дефектов: микротрещин, коррозии и обрывов стальных проволок в канатах, концентрации напряжения в металлоконструкциях. Концентрация напряжения выявляется с помощью специальных приборов, в основе работы которых лежат принципы Баркгаузсна и Виллари.

Метод частичных разрядов применяется для выявления дефектов в изоляции высоковольтного оборудования (трансформаторы, электрические машины). Физические основы частичных разрядов состоят в том, что в изоляции электрооборудования образуются локальные заряды различной полярности. При разнополярных зарядах возникает искра (разряд). Частота этих разрядов изменяется в диапазоне 5 - 600 кГц, они имеют различную мощность и длительность.

Существуют различные методы регистрации частичных разрядов:

    метод потенциалов (зонд частичных разрядов Lemke-5);

    акустический (применяются высокочастотные датчики);

    электромагнитный (зонд частичных разрядов);

    емкостный.

Для выявления дефектов в изоляции станционных синхронных генераторов с водородным охлаждением и дефектов в трансформаторах на напряжение 3 - 330 кВ применяется хромотографический анализ газов . При возникновении различных дефектов в трансформаторах в масле выделяются различные газы: метан, ацетилен, водород и т.д. Доля этих растворенных в масле газов чрезвычайно мала, но тем не менее имеются приборы (хромотографы), с помощью которых указанные газы выявляются в трансформаторном масле и определяется степень развития тех или других дефектов.

Для измерения тангенса угла диэлектрических потерь в изоляции в высоковольтном электрооборудовании (трансформаторы, кабели, электрические машины) применяется специальный прибор - . Этот параметр измеряется при подаче напряжения от номинального до 1,25 номинального. При хорошем техническом состоянии изоляции тангенс угла диэлектрических потерь не должен изменяться в этом диапазоне напряжения.


Графики изменения тангенса угла диэлектрических потерь: 1 - неудовлетворительное; 2 - удовлетворительное; 3 - хорошее техническое состояние изоляции

Кроме того, для технического диагностирования валов электрических машин, корпусов трансформаторов могут использоваться следующие методы: ультразвуковой, ультразвуковая толщинометрия, радиографический, капиллярный (цветной), вихретоковый, механические испытания (твердометрия, растяжение, изгиб), рентгенографическая дефектоскопия, металлографический анализ.

Грунтович Н. В.