Атомные орбитали. Скрытая от нас красота Что такое электронная орбиталь в химии определение

Орбитали атома вододрода.

Когда рассматриваются волновые функции для электронов в отдельных атомах, эти функции называют атомными орбиталями (сокращенно АО). Экспериментальные доказательства существования атомных орбиталей можно получить из атомных спектров. Например, при электрическом разряде в газообразном водороде молекулы Н 2 диссоциируют на атомы, а атомы испускают свет строго определенных частот, которые группируются сериями: в видимой области (так называемая серия Бальмера), ультрафиолетовой (серия Лаймана), инфракрасной (серия Пашена). Еще в доквантовый период было замечено, что все серии удовлетворяют одному простому уравнению:

атомный молекулярный орбиталь квантование

Атом водорода трехмерен, поэтому уравнение Шредингера должно включать кинетическую энергию во всех трех измерениях и будет иметь несколько более сложный вид, чем представленное в разделе 1.1 этой главы уравнение для одномерного движения. При его решении с наложением граничных условий, которые вытекают из вероятностной интерпретации волновой функции, были получены следующие выводы.

1. Необходимо принять, что существуют три безразмерных квантовых числа, которые обозначают символами п, / и т. Появление квантового числа п вызвано тем, что электрон может менять свое расстояние от ядра. Квантовые

числа / и т связаны с угловым моментом количества движения электрона, который может вращаться вокруг ядра в трех измерениях. Число / характеризует величину углового момента, а число т - ориентацию углового момента в пространстве, так как угловой момент - векторная величина. Допустимыми значениями квантовых чисел, которые вытекают из граничных условий, являются n - 1, 2, 3.;

2. Энергия электрона, вообще говоря, должна зависеть от всех трех квантовых чисел, или, по крайней мере, от двух, однако уникальной особенностью атома водорода (но не других атомов) является то, что энергия электрона зависит только от п. По этой причине п называется главным квантовым числом. (Так, для п = 3l может принимать значения 0, 1 и 2, но энергия электрона остается постоянной.) Разрешенными энергиями будут энергии, имеющие вид Еп = R/п2.


Атомные орбит али атома водорода имеют очень важное значение, так как они показывают, как распределен электрон (или электронная плотность) в пространстве. Амплитуда АО ш (r) различна в разных местах пространства, а вероятность нахождения электрона в некоторой бесконечно малой области dф вокруг точки r составляет. Пространственное распределение электрона можно изобразить путем указания величины с помощью разной плотности штриховки на диаграмме. Распределение плотности в некоторых АО водорода представлено на рис.1.1

Орбиталь основного состояния атома водорода очень проста: она сферически симметрична и ее плотность экспоненциально спадает по мере удаления от ядра. Следовательно, наиболее вероятно найти электрон около ядра, где ц/ и, таким образом, у? ^ максимальны. Это согласуется спред став легшем, что электрон для достижения наименьшей потенциальной энергии должен стремиться к ядру. Однако орбнталь не совсем "прижата" к ядру, а распространяется и на области, достаточно удаленные от него. Такая ситуация возникает вследствие того, что большое значение имеет не только потенциальная, но и кинетическая энергия электрона. Последнюю нельзя представить как кинетическую энергию движения по орбите вокруг ядра, которая приводит к появлению центробежной силы, удерживающей электрон вдали от ядра, поскольку угловой момент электрона в основном состоянии атома водорода равен нулю. (При п= 1 может быть только одно квантовое число величины углового момента: /=0, и, следовательно, равна нулю.) Таким образом, в классическом понимании электрон в основном состоянии атома водорода как бы не вращается вокруг ядра, а просто качается вдоль радиуса. С этим и связана его кинетическая энергия. С точки зрения квантовой теории, кинетическая энергия электрона связана с длиной волны электрона, распространяющейся в радиальном направлении. Если орбнталь "поджимается" к ядру, длина волны в радиальном направлении неизбежно уменьшается, и поэтому кинетическая энергия возрастает (разд.1.1). Реальная орбнталь является результатом компромисса между умеренно низкой потенциальной энергией и умеренно высокой кинетической энергией. Ближе к ядру электронная плотность выше, но она имеется и на удаленном от ядра расстоянии.

Рис.1.1

Все орбитали с нулевым угловым моментом называются s-орбиталями. Орбиталь низшей энергии называется 1s-орбиталью. Если п= 2 и 7=0, то это 2s-орбиталь. Ее энергия выше, чем энергия 1s-орбитали, по двум причинам. Во-первых, она имеет радиальный узел (рис.1.2), представляющий собой сферическую поверхность, внутри и снаружи которой волновая функция имеет разные знаки, и на самой этой поверхности электронная плотность равна нулю. Появление узлов на любой орбитали повышает энергию электрона, занимающего эту орбиталь, и чем больше узлов, тем энергия орбитали выше.

Это связано с тем, что с увеличением числа узлов длина волны электрона становится короче, т.е. большее число полуволи приходится на одну и ту же область пространства и поэтому его кинетическая энергия возрастает. Во - вторых, повышение энергии 2s-орбитали по сравнению с 1s-орбиталью связано с тем, что 2s-орбиталь простирается на расстояние, более далекое от ядра, и поэтому потенциальная энергия электрона на ней выше, чем на 1s-орбитали. Аналогичные замечания можно сделать и относительно более высоко лежащих s-орбиталей: и т.д.

Рис.1.2

Орбиталь с п= 1 не имеет узлов. Орбитали с п=2 имеют один узел, с п=3 - два узла и т.д. Относительно операции симметрии инверсии (центр инверсии совпадает с центром ядра) все s-орбитали симметричны, все s-орбитали антисимметричны, все s-орбитали симметричны и т.д.

Если n=0, единственным значением, разрешенным для l , является нуль, но если n=2, квантовое число орбитального углового момента может принимать значения 0 (2л-орбит аль) или 1. Если n= 1, атомные орбитали носят название р- орбнгалей. При n= 2 и l = 1 мы имеем 2р-орбнталь. Она отличается от 2s-орбнтали тем, что занимающий ее электрон обладает орбитальным угловым моментом величиной (2) Угловой момент является следствием наличия углового узла (рис.1.2), который, как говорят, "вводит кривизну в угловое изменение волновой функции" (шар превращается в гантель). Наличие орбитального углового момента оказывает сильное влияние на радиальную форму орбитали. В то время как все 5-орбит али у ядра имеют ненулевое значение,1s-орбитали там отсутствуют. Это можно представить как отбрасывание электрона от ядра орбитальным угловым моментом. Сила кулоновского притяжения электрона к ядру пропорциональна 1 /г где г - расстояние от ядра, а центробежная сила, отталкивающая электроны от ядра, пропорциональна r 3 (3 - угловой момент). Поэтому, если угловой момент ^0, при очень малых г центробежная сила превосходит кулоновскую. Этот центробежный эффект проявляется также в АО с l =2, которые называются 1s-орбиталями, l =3 (s-орбитали) и более высоких орбиталях (Ј-, /? - , у-орбитали). Все эти орбит али, из-за того, что /^0, имеют нулевую амплитуду у ядра и, следовательно, вероятность обнаружить там электроны равна нулю.

У 2/? - орбнтали нет радиального узла, но зато 3/? - орбиталь его имеет. Эскизы нижних атомных орбит алей, иллюстрирующие свойства и симметрию АО (но не вероятностное распределение электрона внутри орбитали, как на рис.1.1), приведены на рис.1.2 Светлые и затемненные области - это места, где волновая функция имеет разные знаки. Поскольку выбор знака произволен, безразлично, будем ли мы соотносить затемненные области с положительным, а светлые области с отрицательным знаком волновой функции, или наоборот. Граница между светлой и темной областями орбнталей - это узел, т.е. то место, где волновая функция равна нулю, или, другими словами, место, где волновая функция меняет знак на противоположный. Чем больше узлов, тем выше энергия электрона, занимающего данную АО.

Поскольку для орбиталей l=0, квантовое число т может принимать значения +1, 0 и - 1. Разные значения т соответствуют орбнталям с различными ориеитациями орбитального углового момента, р-Орбиталь с т=0 имеет нулевую проекцию углового момента на ось 2 (рис.1.2), и по этой причине ее называют р 2 -орбиталью. Вид р 2 - орбнтали (см. рис.1.1 и 1.2) говорит о том, что электронная плотность "собрана в заводи" вдоль оси 2. В этом случае существует горизонтальная узловая плоскость, проходящая через ядро, и вероятность найти электрон в этой плоскости равна нулю. Две другие р - орбнтали можно представить аналогичными картинами с ориентацией "лопастей" вдоль осей хну (см. рис.1.1), поэтому они называются р х и р у - орбнталями.

Если /? =3, то / может принимать значения 0, 1 и 2. Это прнаоднг к одной 3^-орбнгали, трем 3/? - орбнгалям и пяти 3^-орбнгалям.3б/-Орбнталей пять, поскольку при / =2 т может принимать значения 2, 1, 0, - 1 и - 2. Все Ъй - орбнтали имеют нулевую амплитуду у ядра. У них нет радиальных узлов (у 4с1 - орбнталей радиальные узлы появляются), но у каждой есть две узловые плоскости (см. рис.1.2).

Выше было сказано, что энергия электрона в атоме водорода зависит от главного квантового числа орбнтали, которую он занимает и не зависит от его орбитального углового момента. Таким образом, в атоме водорода электрон на 2л-орбнтали имеет ту же энергию, что и на любой из 2р-орбит алей. Если различные орбнтали имеют одинаковую энергию, они называются вырожденными . Вырождение атома водорода представляет собой нечто исключительное и в физике объясняется особой формой его кулоновского потенциала.

Атомные орбитали

В конце XIX в. французскими учеными физиками П.Кюри и М.Склодовской-Кюри было открыто явление естественной радиоактивности. В составе урановых руд ими были найдены два новых радиоактивных элемента - полоний и радий. Было показано. что радий претерпевает многоступенчатый распад, который заканчивается образованием стабильного свинца. Поскольку свинец сильно отличается от радия, такое превращение можно было объяснить только тем, что атомы того и другого элементов (и вообще всех остальных элементов) построены по схожим принципам из одинаковых, более мелких, чем сами атомы, частиц, количество которых, в свою очередь, определяет свойства тех или иных элементов. Это послужило основанием для углубленного детального изучения строения атома.

Планетарная модель атома и ее развитие

Первым основополагающим достижением в этой области было создание модели атома Э. Резерфордом (1911 г.) . По Резерфорду, практичски вся масса атома сосредоточена в его центральной части, которая была названа ядром . Ядро имеет положительный заряд, который компенсируется вращающимися вокруг ядра отрицательно заряженными электронами . Представленный таким образом атом напоминал планетную систему со светилом в центре, вследствие чего она получила название планетарной . Планетарная модель атома позволяла объяснить ряд экспериментально наблюдаемых явлений тем, что практически вся масса атома представлялась сосредоточенной в его ядре, размеры которого оказывались намного меньше размеров остальной части атома, занятой электронами. Однако характер движения электронов по замкнутым орбитам вокруг ядра противоречил физическим представлениям о поведении взаимодействующих электрических зарядов.

Во первых, по законам электродинамики, вращающийся вокруг ядра электрон должен, в результате потери энергии на излучение, упасть на ядро. Во-вторых, при сближении с ядром длины излучаемых электроном волн должны непрерывно изменяться, образуя сплошной спектр. Однако атомы не исчезают (т.е. электроны не падают на ядро), а спектры излучения атомов являются не сплошными, а линейчатыми.

Впоследствии датский физик-теоретик Н.Бор использовал представления Резерфорда и квантовую теорию М.Планка (1900 г.) для разработки в 1913 г. первой квантовой модели атома. Теория Бора основана на двух постулалах . Согласно первому постулату Бора, электроны в атоме вращаются не излучая энергии по строго определенным стационарным орбитам, удовлетворяющим теории квантов, т.е.таким, которым отвечают точно определенные (квантованные) значения энергии. Эти значения называются энергетическими уровнями. Число электронов, которые могут находиться на каждом уровне определяется формулой $2n^2$, где $n$ - номер уровня. Т.е. на первом уровне может быть только 2 электрона, на втором - $8$, на третьем - $18$, на четвертом - $32$. Максимальное заполнение электронами более высоких уровней в атомах известных элементов не достигается.

Второй постулат Бора заключается в том, что при переходе с одной орбиты на другую электрон излучает квант энергии. После того как Бор рассчитал радиусы орбит и энергии электронов, на них, он рассчитал также энергию фотонов и соответствующие им линии в спектре атома водорода, причем расчетные и экспериментальные данные соответствовали друг другу.

Теория Бора оказалась в определенном смысле плодотворной, т.к. позволила объяснить линейчатый характер атомных спектров и отчасти качественно механизм образования химической связи. В то же время она еще не давала возможности количественно рассчитать энергию химической связи даже в простейших молекулах.

В конце концов стало ясно, что законы механики, описывающие движение микрообъектов, таких как элементарные частицы, отличаются от законов классической механики.

Корпускулярно-волновые свойства микромира и уравнение Шредингера

Следующий этап в становлении квантовой теории строения атома начался с теоретического обоснования де Бройлем двойственной природы материальных тел, в частности - электрона .

Впервые двойственная природа установлена для света. Для него с одной стороны характерны явления интерференции и дифракции, что присуще волновым процессам, а с другой стороны -- явления фотоэффекта и светового давления, объяснимые только на основе представлений о свете как потоке частиц.

Распространив идеи Эйнштейна о корпускулярно-волновом дуализме (двойственности) природы света на вещество, де Бройль постулировал в 1924 г., что электрон наряду с корпускулярными, обладает и волновыми свойствами.

Кроме того, согласно представлениям квантовой теории одновременно и абсолютно точно определить импульс и координату микрочастицы невозможно . Погрешности их определения соотносятся между собой как

где $р$ - импульс, $х$ - координата, $h$ - постоянная Планка

Это положение является одним из постулатов квантовой механики и называется принципом неопределенности Гейзенберга . Принцип неопределенности не следует понимать просто как нашу неспособность точно измерить определенные величины. Он является реальным свойством движущихся объектов, траектории которых не представляют собой прямых или плавно искривленных линий, а имеют волновой характер и подчиняются законам волновой механики.

Применительно к электрону в атоме это означает, что невозможно точно указать пространственные координаты электрона в атоме в данный момент времени, а лишь о вероятности его нахождения в определенном объеме вблизи атомного ядра.

Исходя из учения о корпускулярно-волновом дуализме природы электрона, Шредингер и ряд других ученых разработали теорию движения микрочастиц - волновую механику, которая привела к созданию современной квантово-механической или орбитальной модели атома.

С точки зрения волновой механики, электрон является стоячей волной. Для нее характерно вынужденное движение, при котором максимумы и минимумы, чередуясь, располагаются в одной плоскости, но в противоположных направлениях. В т.н. узловых точках, на половине расстояния между максимумом и минимумом, функция равна нулю. При переходе через узел направление и знак волны меняется.

Функцию, о которой идет речь, принято называть волновой функцией . Шредингер вывел уравнение, которое связывает волновую функцию с энергией электрона или «ансамбля» электронов. Волновое уравнение Шредингера для движения частицы имеет вид:

где $h$ - постоянная Планка, $m$ - масса частицы, $U$ - ее потенциальная энергия, $Е$ - ее полная энергия, $\Psi $ - т.н. волновая функция. Последняя величина имеет физический смысл не сама по себе, а ее квадрат $\Psi^2$. Эта величина является плотностью вероятности распределения электрона в объеме вблизи атомного ядра.

Решая уравнение Шредингера для атома, можно найти выражение для $\Psi $, которое позволяет вычислить плотность вероятности нахождения электрона в той или иной точке пространства вокруг ядра, не рассматривая траекторию движения электрона. Эту функцию, называемую орбиталью , наглядно можно представить в виде «электронного облака» с центром симметрии в точке, соответствующей ядру атома. Отрицательный заряд электрона делокализован (распределен) в пространстве вблизи атомного ядра. При этом «плотность» электронного облака различна в разных точках пространства вблизи атомного ядра. Т.е. чем больше вероятность, связанная с величиной $\Psi^2$, тем «мутнее» облако.

Очевидно, вероятностный подход к описанию атома предполагает невозможным четко ограничить пространство, в котором может находиться электрон, т.е. не позволяет точно определить границы атома. При квантово-механическом моделировании этого пространства, допуская, что достаточно ограничить вероятность пребывания электрона объемом, который составляет $90 - 95\%$ от полного объема пространства вокруг ядра. Этот объем, величина и форма которого может быть различной, и принято считать атомной орбиталью .

Определение 1

Т.о., согласно представлению о вероятностном характере распределения координаты и заряда электрона в пространстве вблизи атомного ядра можно определить атомную орбиталь как геометрический образ, отвечающий объему пространства вокруг атомного ядра, который соответствует $90\%$-ной вероятности нахождения в этом объеме электрона (как частицы) и одновременно $90\%$-ной плотности заряда электрона (как волны).

Электронная конфигурация атома - это численное представление его электронных орбиталей. Электронные орбитали - это области различной формы, расположенные вокруг атомного ядра, в которых математически вероятно нахождение электрона. Электронная конфигурация помогает быстро и с легкостью сказать читателю, сколько электронных орбиталей есть у атома, а также определить количество электронов, находящихся на каждой орбитали. Прочитав эту статью, вы освоите метод составления электронных конфигураций.

Шаги

Распределение электронов с помощью периодической системы Д. И. Менделеева

    Найдите атомный номер вашего атома. Каждый атом имеет определенное число электронов, связанных с ним. Найдите символ вашего атома в таблице Менделеева . Атомный номер - это целое положительное число, начинающееся от 1 (у водорода) и возрастающее на единицу у каждого последующего атома. Атомный номер - это число протонов в атоме, и, следовательно, это еще и число электронов атома с нулевым зарядом.

    Определите заряд атома. Нейтральные атомы будут иметь столько же электронов, сколько показано в таблице Менделеева. Однако заряженные атомы будут иметь большее или меньшее число электронов - в зависимости от величины их заряда. Если вы работаете с заряженным атомом, добавляйте или вычитайте электроны следующим образом: добавляйте один электрон на каждый отрицательный заряд и вычитайте один на каждый положительный.

    • Например, атом натрия с зарядом -1 будет иметь дополнительный электрон в добавок к своему базовому атомному числу 11. Иначе говоря, в сумме у атома будет 12 электронов.
    • Если речь идет об атоме натрия с зарядом +1, от базового атомного числа 11 нужно отнять один электрон. Таким образом, у атома будет 10 электронов.
  1. Запомните базовый список орбиталей. По мере того, как у атома увеличивается число электронов, они заполняют различные подуровни электронной оболочки атома согласно определенной последовательности. Каждый подуровень электронной оболочки, будучи заполненным, содержит четное число электронов. Имеются следующие подуровни:

    Разберитесь в записи электронной конфигурации. Электронные конфигурации записываются для того, чтобы четко отразить количество электронов на каждой орбитали. Орбитали записываются последовательно, причем количество атомов в каждой орбитали записывается как верхний индекс справа от названия орбитали. Завершенная электронная конфигурация имеет вид последовательности обозначений подуровней и верхних индексов.

    • Вот, например, простейшая электронная конфигурация: 1s 2 2s 2 2p 6 . Эта конфигурация показывает, что на подуровне 1s имеется два электрона, два электрона - на подуровне 2s и шесть электронов на подуровне 2p. 2 + 2 + 6 = 10 электронов в сумме. Это электронная конфигурация нейтрального атома неона (атомный номер неона - 10).
  2. Запомните порядок орбиталей. Имейте в виду, что электронные орбитали нумеруются в порядке возрастания номера электронной оболочки, но располагаются по возрастанию энергии. Например, заполненная орбиталь 4s 2 имеет меньшую энергию (или менее подвижна), чем частично заполненная или заполненная 3d 10 , поэтому сначала записывается орбиталь 4s. Как только вы будете знать порядок орбиталей, вы сможете с легкостью заполнять их в соответствии с количеством электронов в атоме. Порядок заполнения орбиталей следующий: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.

    • Электронная конфигурация атома, в котором заполнены все орбитали, будет иметь следующий вид: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 10 7p 6
    • Обратите внимание, что приведенная выше запись, когда заполнены все орбитали, является электронной конфигурацией элемента Uuo (унуноктия) 118, атома периодической системы с самым большим номером. Поэтому данная электронная конфигурация содержит все известные в наше время электронные подуровни нейтрально заряженного атома.
  3. Заполняйте орбитали согласно количеству электронов в вашем атоме. Например, если мы хотим записать электронную конфигурацию нейтрального атома кальция, мы должны начать с поиска его атомного номера в таблице Менделеева. Его атомный номер - 20, поэтому мы напишем конфигурацию атома с 20 электронами согласно приведенному выше порядку.

    • Заполняйте орбитали согласно приведенному выше порядку, пока не достигнете двадцатого электрона. На первой 1s орбитали будут находится два электрона, на 2s орбитали - также два, на 2p - шесть, на 3s - два, на 3p - 6, и на 4s - 2 (2 + 2 + 6 +2 +6 + 2 = 20.) Иными словами, электронная конфигурация кальция имеет вид: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 .
    • Обратите внимание: орбитали располагаются в порядке возрастания энергии. Например, когда вы уже готовы перейти на 4-й энергетический уровень, то сначала записывайте 4s орбиталь, а затем 3d. После четвертого энергетического уровня вы переходите на пятый, на котором повторяется такой же порядок. Это происходит только после третьего энергетического уровня.
  4. Используйте таблицу Менделеева как визуальную подсказку. Вы, вероятно, уже заметили, что форма периодической системы соответствует порядку электронных подуровней в электронных конфигурациях. Например, атомы во второй колонке слева всегда заканчиваются на "s 2 ", а атомы на правом краю тонкой средней части оканчиваются на "d 10 " и т.д. Используйте периодическую систему как визуальное руководство к написанию конфигураций - как порядок, согласно которому вы добавляете к орбиталям соответствует вашему положению в таблице. Смотрите ниже:

    • В частности, две самые левые колонки содержат атомы, чьи электронные конфигурации заканчиваются s-орбиталями, в правом блоке таблицы представлены атомы, чьи конфигурации заканчиваются p-орбиталями, а в нижней части атомы заканчиваются f-орбиталями.
    • Например, когда вы записываете электронную конфигурацию хлора, размышляйте следующим образом: "Этот атом расположен в третьем ряду (или "периоде") таблицы Менделеева. Также он располагается в пятой группе орбитального блока p периодической системы. Поэтому, его электронная конфигурация будет заканчиваться на...3p 5
    • Обратите внимание: элементы в области орбиталей d и f таблицы характеризуются энергетическими уровнями, которые не соответствуют периоду, в котором они расположены. Например, первый ряд блока элементов с d-орбиталями соответствует 3d орбиталям, хотя и располагается в 4 периоде, а первый ряд элементов с f-орбиталями соответствует орбитали 4f, несмотря на то, что он находится в 6 периоде.
  5. Выучите сокращения написания длинных электронных конфигураций. Атомы на правом краю периодической системы называются благородными газами. Эти элементы химически очень устойчивы. Чтобы сократить процесс написания длинных электронных конфигураций, просто записывайте в квадратных скобках химический символ ближайшего благородного газа с меньшим по сравнению с вашим атомом числом электронов, а затем продолжайте писать электронную конфигурацию последующих орбитальных уровней. Смотрите ниже:

    • Чтобы понять эту концепцию, полезно будет написать пример конфигурации. Давайте напишем конфигурацию цинка (атомный номер 30), используя сокращение, включающее благородный газ. Полная конфигурация цинка выглядит так: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 . Однако мы видим, что 1s 2 2s 2 2p 6 3s 2 3p 6 - это электронная конфигурация аргона, благородного газа. Просто замените часть записи электронной конфигурации цинка химическим символом аргона в квадратных скобках (.)
    • Итак, электронная конфигурация цинка, записанная в сокращенном виде, имеет вид: 4s 2 3d 10 .
    • Учтите, если вы пишете электронную конфигурацию благородного газа, скажем, аргона, писать нельзя! Нужно использовать сокращение благородного газа, стоящего перед этим элементом; для аргона это будет неон ().

    С помощью периодической таблицы ADOMAH

    1. Освойте периодическую таблицу ADOMAH. Данный метод записи электронной конфигурации не требует запоминания, однако требует наличия переделанной периодической таблицы, поскольку в традиционной таблице Менделеева, начиная с четвертого периода, номер периода не соответствует электронной оболочке. Найдите периодическую таблицу ADOMAH - особый тип периодической таблицы, разработанный ученым Валерием Циммерманом. Ее легко найти посредством короткого поиска в интернете.

      • В периодической таблице ADOMAH горизонтальные ряды представляют группы элементов, такие как галогены, инертные газы, щелочные металлы, щелочноземельные металлы и т.д. Вертикальные колонки соответствуют электронным уровням, а так называемые "каскады" (диагональные линии, соединяющие блоки s,p,d и f) соответствуют периодам.
      • Гелий перемещен к водороду, поскольку оба этих элемента характеризуются орбиталью 1s. Блоки периодов (s,p,d и f) показаны с правой стороны, а номера уровней приведены в основании. Элементы представлены в прямоугольниках, пронумерованных от 1 до 120. Эти номера являются обычными атомными номерами, которые представляют общее количество электронов в нейтральном атоме.
    2. Найдите ваш атом в таблице ADOMAH. Чтобы записать электронную конфигурацию элемента, найдите его символ в периодической таблице ADOMAH и вычеркните все элементы с большим атомным номером. Например, если вам нужно записать электронную конфигурацию эрбия (68), вычеркните все элементы от 69 до 120.

      • Обратите внимание на номера от 1 до 8 в основании таблицы. Это номера электронных уровней, или номера колонок. Игнорируйте колонки, которые содержат только вычеркнутые элементы. Для эрбия остаются колонки с номерами 1,2,3,4,5 и 6.
    3. Посчитайте орбитальные подуровни до вашего элемента. Смотря на символы блоков, приведенные справа от таблицы (s, p, d, and f), и на номера колонок, показанные в основании, игнорируйте диагональные линии между блоками и разбейте колонки на блоки-колонки, перечислив их по порядку снизу вверх. И снова игнорируйте блоки, в которых вычеркнуты все элементы. Запишите блоки-колонки, начиная от номера колонки, за которым следует символ блока, таким образом: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s (для эрбия).

      • Обратите внимание: Приведенная выше электронная конфигурация Er записана в порядке возрастания номера электронного подуровня. Ее можно также записать в порядке заполнения орбиталей. Для этого следуйте по каскадам снизу вверх, а не по колонкам, когда вы записываете блоки-колонки: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 12 .
    4. Посчитайте электроны для каждого электронного подуровня. Подсчитайте элементы, в каждом блоке-колонке которые не были вычеркнуты, прикрепляя по одному электрону от каждого элемента, и запишите их количество рядом с символом блока для каждого блока-колонки таким образом: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 12 5s 2 5p 6 6s 2 . В нашем примере это электронная конфигурация эрбия.

    5. Учитывайте неправильные электронные конфигурации. Существует восемнадцать типичных исключений, относящихся к электронным конфигурациям атомов в состоянии с наименьшей энергией, также называемом основным энергетическим состоянием. Они не подчиняются общему правилу только по последним двум-трем положениям, занимаемым электронами. При этом действительная электронная конфигурация предполагает нахождение электронов в состоянии с более низкой энергией в сравнении со стандартной конфигурацией атома. К атомам-исключениям относятся:

      • Cr (..., 3d5, 4s1); Cu (..., 3d10, 4s1); Nb (..., 4d4, 5s1); Mo (..., 4d5, 5s1); Ru (..., 4d7, 5s1); Rh (..., 4d8, 5s1); Pd (..., 4d10, 5s0); Ag (..., 4d10, 5s1); La (..., 5d1, 6s2); Ce (..., 4f1, 5d1, 6s2); Gd (..., 4f7, 5d1, 6s2); Au (..., 5d10, 6s1); Ac (..., 6d1, 7s2); Th (..., 6d2, 7s2); Pa (..., 5f2, 6d1, 7s2); U (..., 5f3, 6d1, 7s2); Np (..., 5f4, 6d1, 7s2) и Cm (..., 5f7, 6d1, 7s2).
    • Чтобы найти атомный номер атома, когда он записан в форме электронной конфигурации, просто сложите все числа, которые идут за буквами (s, p, d, и f). Это работает только для нейтральных атомов, если вы имеете дело с ионом, то ничего не получится - вам придется добавить или вычесть количество дополнительных или потерянных электронов.
    • Число, идущее за буквой - это верхний индекс, не сделайте ошибку в контрольной.
    • "Стабильности полузаполненного" подуровня не существует. Это упрощение. Любая стабильность, которая относится к "наполовину заполненным" подуровням, имеет место из-за того, что каждая орбиталь занята одним электроном, поэтому минимизируется отталкивание между электронами.
    • Каждый атом стремится к стабильному состоянию, а самые стабильные конфигурации имеют заполненные подуровни s и p (s2 и p6). Такая конфигурация есть у благородных газов, поэтому они редко вступают в реакции и в таблице Менделеева расположены справа. Поэтому, если конфигурация заканчивается на 3p 4 , то для достижения стабильного состояния ей необходимо два электрона (чтобы потерять шесть, включая электроны s-подуровня, потребуется больше энергии, поэтому потерять четыре легче). А если конфигурация оканчивается на 4d 3 , то для достижения стабильного состояния ей необходимо потерять три электрона. Кроме того, полузаполненные подуровни (s1, p3, d5..) являются более стабильными, чем, например, p4 или p2; однако s2 и p6 будут еще более устойчивыми.
    • Когда вы имеете дело с ионом, это значит, что количество протонов не равно количеству электронов. Заряд атома в этом случае будет изображен сверху справа (как правило) от химического символа. Поэтому атом сурьмы с зарядом +2 имеет электронную конфигурацию 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 1 . Обратите внимание, что 5p 3 изменилось на 5p 1 . Будьте внимательны, когда конфигурация нейтрального атома заканчивается на подуровни, отличные от s и p. Когда вы забираете электроны, вы можете забрать их только с валентных орбиталей (s и p орбиталей). Поэтому, если конфигурация заканчивается на 4s 2 3d 7 и атом получает заряд +2, то конфигурация будет заканчиваться 4s 0 3d 7 . Обратите внимание, что 3d 7 не меняется, вместо этого теряются электроны s-орбитали.
    • Существуют условия, когда электрон вынужден "перейти на более высокий энергетический уровень". Когда подуровню не хватает одного электрона до половинной или полной заполненности, заберите один электрон из ближайшего s или p- подуровня и переместите его на тот подуровень, которому необходим электрон.
    • Имеется два варианта записи электронной конфигурации. Их можно записывать в порядке возрастания номеров энергетических уровней или в порядке заполнения электронных орбиталей, как было показано выше для эрбия.
    • Также вы можете записывать электронную конфигурацию элемента, записав лишь валентную конфигурацию, которая представляет собой последний s и p подуровень. Таким образом, валентная конфигурация сурьмы будет иметь вид 5s 2 5p 3 .
    • Ионы не то же самое. С ними гораздо сложнее. Пропустите два уровня и действуйте по той же схеме в зависимости от того, где вы начали, и от того, насколько велико количество электронов.

Для понимания этого необходимо знать принципы построения электронных оболочек. Электроны, окружающие ядра, не являются точечными зарядами, а представляют собой некое «облако» отрицательного заряда. Участок пространства, занимаемый электронным облаком носит название «орбиталь ». Каждая орбиталь математически описывается волновой функцией ψ (пси-функция). Квадрат этой функции ψ 2 имеет физический смысл: отражает вероятность нахождения электронного облака в рассматриваемом объеме. Каждому электрону соответствует определенный (квантованный) уровень энергии. Волновые функции каждой орбитали отличаются друг друга совокупностью трёх квантовых чисел n , l и m .

    Главное квантовое число n принимает только целочисленные значения (n = 1, 2, 3 …) и характеризует энергию электронного состояния.

    Орбитальное квантовое число l – характеризует геометрию электронного облака. Принимает значения l = 0, 1, 2, 3… (n - 1). В соответствии со значением числа изменяется от числа l различают:

s -орбитали (l = 0),

p -орбитали (l = 1),

d -орбитали (l = 2),

f -орбитали (l = 3).

При постоянном значении главного квантового числа (n = const) изменение значения связано незначительным изменением энергетического состояния.

    Магнитное квантовое число m – определяет ориентацию орбитали в пространстве. Принимает значения = 0, ±1, ±2, … ± l . Изменение значения m при неизменных n и l не связано с изменением энергетического уровня орбитали.

Наряду с этими тремя квантовыми числами n , l и m существует так называемое спиновое квантовое число m S , которое соответствует двум возможным направлениям ориентации собственного магнитного момента электрона. Магнитное квантовое число принимает значения m S = +1/2 и –1/2.

Заполнение орбиталей происходит в соответствии с принципом Паули 3 , согласно которому в атоме не может быть двух электронов с тождественным набором квантовый чисел. То есть, в атоме допускается сосуществование лишь таких электронов, которые различаются хотя бы одним квантовым числом. Учитывая принцип Паули, максимальное число электронов в оболочке (n = const) равно 2n 2 (см. Табл.1).

Таблица 1

Заполнение электронных орбиталей в соответствии с принципом Паули

Квантовые числа

О б о л о ч к и

K

L

M

Значение квантовых чисел

n

l

m

m s

Число электронов

    1. Молекулярные орбитали (мо)

Образование ковалентной химической связи происходит путем перекрывания электронных орбиталей. Различают два основных вида перекрывания:

- σ-связь – перекрывание атомных орбиталей на оси, соединяющей оба ядра

s s p p

- π-связь – перекрывание орбиталей, оси которых параллельны

p p

При образовании химической связи электроны атомов, ранее занимавшие атомные орбитали (АО) переходят на новые молекулярные орбитали (МО). Математически молекулярная орбиталь описывается новой волновой функцией, представляющей линейную комбинацию волновых функций атомных орбиталей:

ψ s = a 1 .ψ 1 + a 2 . ψ 2

При перекрывании атомных орбиталей (АО) появляется такое же число молекулярных орбиталей (МО). В локализованной связи происходит перекрывание двух атомных орбиталей, соответственно возникает две молекулярные орбитали. Одна из МО имеет энергию ниже энергии исходной АО (связывающая орбиталь), а другая МО имеет энергию более высокую, чем энергия АО (антисвязывающая или разрыхляющая орбиталь):

Образование σ S – связи

S * – разрыхляющая орбиталь

- - - - - - - - - - -

- - - - - - - - - - - - - - σ S – связывающая орбиталь

Образование π р – связи

- - - - - - - - - - - - - - - π р z * – разрыхляющая орбиталь

-- - - - - - - -

p z p z - - - - - - - - - - - - - - - - - π р z – связывающая орбиталь

Для элементов первых трёх периодов энергетические уровни МО обычно заполняются в следующей последовательности:

σ 1s < σ 1s * < σ 2s < σ 2s * < σ 2px < π 2py = π 2pz < π 2py * = π 2pz * < σ 2px * < …

В качестве примера в соответствии с данной последовательностью заполним энергетические «полочки» МО молекул азота N 2 и окиси углерода СО:

Молекула азота состоит из двух атомов азота:

N(1s 2 2s 2 2p 3)+ N(1s 2 2s 2 2p 3) → N 2 [(σ 1s ) 2 (σ 1s *) 2 (σ 2s ) 2 (σ 2s *) 2 (σ 2p ) 2 (π 2py ) 2 (π 2pz ) 2 ],

7 электронов 7 электронов 14 электронов

Молекула окиси углерода состоит из атома углерода и атома кислорода

C(1s 2 2s 2 2p 2)+ O(1s 2 s 2 2p 4) → СO[(σ 1s ) 2 (σ 1s *) 2 (σ 2s ) 2 (σ 2s *) 2 (σ 2p ) 2 (π 2py ) 2 (π 2pz ) 2 ]

6 электронов 8 электронов 14 электронов

На молекулярных орбиталях N 2 и СО разместилось по 14 электронов. Как видно из приведенных схем, содержимое квадратных скобок (МО) для этих молекул идентично. Подобного рода соединения с одинаковым строением МО носят название соединений с изоэлектронной структурой . Такие соединения имеют достаточно близкие физические свойства (см. Табл.2).

Таблица 2

Физические свойства азота N 2 и окиси углерода СО

Порядок связи принимаем равным полуразности числа электронов, находящихся на связывающих орбиталях, и числа электронов, находящихся на разрыхляющих орбиталях:

n = ½ . (N св. N разр. )

где: n порядок связи,

N св. число электронов, находящихся на связывающих орбиталях,

N разр. число электронов, находящихся на разрыхляющих орбиталях.

Исходя из построения молекулярных орбиталей молекулы СО получаем, что порядок связи между атомами С и О n = 3, что предполагалось теорией октета (см. Раздел 1.1).

Экспериментальными критериями порядка связи являются:

Энергия связи,

Длина связи,

Параметры ИК-спектров (силовая постоянная).

ОРБИТАЛЬ

ОРБИТАЛЬ , в ФИЗИКЕ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ - поверхность пространства вокруг атомного ЯДРА, в которой могут двигаться ЭЛЕКТРОНЫ. Есть большая вероятность присутствия электрона на такой орбитали. Она может содержать один или два электрона. Орбиталь имеет форму и энергию, соответствующую КВАНТОВОМУ ЧИСЛУ атома. В молекулах электроны связи двигаются в объединенном электрическом поле всех ядер. В этом случае атомные орбитали становятся молекулярными орбиталями, областями, которые окружают два ядра, имеющих характерную энергию и содержащих два электрона. Эти молекулярные орбитали, образующиеся из атомных орбиталей, составляют ХИМИЧЕСКИЕ СВЯЗИ.

Атомные орбитали описывают поверхность вокруг ядра атома, в которой скорее всего находятся электроны. Их можно также назвать «энергетическими облаками». Их существованием объясняются химические связи. Электроны содержатся внутри атомных или молекулярных структур, выстраивающихся в энергетические уровни. Для первого уровня характерен только один тип электронов: на нем имеется одна s-орбиталь (А), показанная относительно осей атома х, у и z. Максимальное количество электронов,которые могут находиться на этом энергетическом уровне, равно двум. У второго типа элек тронов орбиталь имеет форму двух соединенных сфер, расположенных симметрично относительно ядра. Такая орбиталь называется р-орбиталью (В) V атома три таких орбитали, и расположены они под прямым углом друг к другу (1,2, 3) Орбитали, которые имеют правильные сферические очертания, для большей ясности картины принято условно обозначать в виде грушевидных облаков. Кроме того, существует также пять d-орбиталей (C-G), каждая из которых состоит из четырех грушевидных долей на двух перпендикулярных осях, пересекающихся в ядре G - комбинация двух р-орбиталей.


Научно-технический энциклопедический словарь .

Смотреть что такое "ОРБИТАЛЬ" в других словарях:

    Орбиталь: Атомная орбиталь. Молекулярная орбиталь. Список значений слова или словосочетания со ссылками на соответствующие статьи. Если вы попали сюда из … Википедия

    орбиталь - – полный набор волновых функций электрона, находящегося в поле нуклидов и усредненном поле всех остальных электронов, взаимодействующих с теми же нуклидами. Атомная орбиталь – разрешенное состояние электрона в атоме, геометрический образ,… … Химические термины

    Ф ция пространственныхпеременных одного электрона, имеющая смысл волновой ф ции электрона, находящегосяв поле атомного или молекулярного остова. Если такая ф ция учитывает спинэлектрона, то она наз. спин О. Подробнее см. Молекулярная орбиталъ.… … Физическая энциклопедия

    орбиталь - orbitale. физ. Атомные и и молекулярные волновые функции электрона, находящегося в поле одного или нескольких атомных ядер и в усредненном поле всех остальных электронов рассматриваемого атома или молекулы. НЭС 2000 … Исторический словарь галлицизмов русского языка

    - (от лат. orbita путь, колея), волновая ф ция, описывающая состояние одного электрона в атоме, молекуле или др. квантовой системе. В общем случае квантовохим. термин О. используется для любой ф ции, зависящей от переменных х, у, z одного… … Химическая энциклопедия

    орбиталь - orbitalė statusas T sritis chemija apibrėžtis Banginė funkcija, apibūdinanti elektrono judėjimą atome arba molekulėje; erdvė, kurioje elektrono buvimas labiausiai tikėtinas. atitikmenys: angl. orbital rus. орбиталь … Chemijos terminų aiškinamasis žodynas

    орбиталь - orbitalė statusas T sritis fizika atitikmenys: angl. orbital vok. Orbital, n rus. орбиталь, f pranc. orbitale, f … Fizikos terminų žodynas

    орбиталь - орбит аль, и … Русский орфографический словарь

    орбиталь - с. Орбита буенча башкарыла торган. Орбита буенча хәрәкәт итә торган яки шуның өчен билгеләнгән … Татар теленең аңлатмалы сүзлеге

    орбиталь - Функция, пространственных переменных одного электрона, имеющая смысл волновой функции отдельного электрона в поле эффективного атомного или молекулярного остова … Политехнический терминологический толковый словарь

Книги

  • Словарь космической философии , Секлитова Л.А. , Данный словарь включает в себя слова и понятия, наиболее часто встречающиеся в эзотерической литературе. Необходимость его составления продиктована тем обстоятельством, что многие известные… Категория: Здоровье и развитие личности Серия: За гранью непознанного Издатель: Амрита-Русь ,
  • Словарь космической философии , Секлитова Лариса Александровна , Стрельникова Людмила , Данный словарь включает в себя слова и понятия, наиболее часто встречающиеся в эзотерической литературе. Необходимость его составления продиктована тем обстоятельством, что многие известные… Категория: