Составить уравнения прямых заданных двумя точками. Уравнение прямой, проходящей через точку, уравнение прямой, проходящей через две точки, угол между двумя прямыми, угловой коэффициент прямой

Уравнение прямой, проходящей через данную точку в данном направлении. Уравнение прямой, проходящей через две данные точки. Угол между двумя прямыми. Условие параллельности и перпендикулярности двух прямых. Определение точки пересечения двух прямых

1. Уравнение прямой, проходящей через данную точку A (x 1 , y 1) в данном направлении, определяемом угловым коэффициентом k ,

y - y 1 = k (x - x 1). (1)

Это уравнение определяет пучок прямых, проходящих через точку A (x 1 , y 1), которая называется центром пучка.

2. Уравнение прямой, проходящей через две точки: A (x 1 , y 1) и B (x 2 , y 2), записывается так:

Угловой коэффициент прямой, проходящей через две данные точки, определяется по формуле

3. Углом между прямыми A и B называется угол, на который надо повернуть первую прямую A вокруг точки пересечения этих прямых против движения часовой стрелки до совпадения ее со второй прямой B . Если две прямые заданы уравнениями с угловым коэффициентом

y = k 1 x + B 1 ,

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим уравнением прямой. В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

А = 0, В ≠0, С ≠0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ≠0, С ≠ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ≠0 – прямая совпадает с осью Оу

А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Уравнение прямой по точке и вектору нормали

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой, заданной уравнением Ах + Ву + С = 0.

Пример . Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно (3, -1).

Решение . Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно, С = -1. Итого: искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2), тогда уравнение прямой, проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.На плоскости записанное выше уравнение прямой упрощается:

если х 1 ≠ х 2 и х = х 1 , если х 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой.

Пример . Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту

Если общее Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k .

Уравнение прямой по точке и направляющему вектору

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор (α 1 , α 2), компоненты которого удовлетворяют условию А α 1 + В α 2 = 0 называется направляющим вектором прямой

Ах + Ву + С = 0.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением, коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0. при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:

Уравнение прямой в отрезках

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим: или

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой

Если обе части уравнения Ах + Ву + С = 0 умножить на число , которое называется нормирующем множителем , то получим

xcosφ + ysinφ - p = 0 –

нормальное уравнение прямой. Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0. р – длина перпендикуляра, опущенного из начала координат на прямую, а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Пример . Дано общее уравнение прямой 12х – 5у – 65 = 0. Требуется написать различные типы уравнений этой прямой.

уравнение этой прямой в отрезках:

уравнение этой прямой с угловым коэффициентом: (делим на 5)

; cos φ = 12/13; sin φ= -5/13; p = 5.

Cледует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые, параллельные осям или проходящие через начало координат.

Пример . Прямая отсекает на координатных осях равные положительные отрезки. Составить уравнение прямой, если площадь треугольника, образованного этими отрезками равна 8 см 2 .

Решение. Уравнение прямой имеет вид: , ab /2 = 8; ab=16; a=4, a=-4. a = -4 < 0 не подходит по условию задачи. Итого: или х + у – 4 = 0.

Пример . Составить уравнение прямой, проходящей через точку А(-2, -3) и начало координат.

Решение . Уравнение прямой имеет вид: , где х 1 = у 1 = 0; x 2 = -2; y 2 = -3.

Угол между прямыми на плоскости

Определение. Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между этими прямыми будет определяться как

.

Две прямые параллельны, если k 1 = k 2 . Две прямые перпендикулярны, если k 1 = -1/ k 2 .

Теорема. Прямые Ах + Ву + С = 0 и А 1 х + В 1 у + С 1 = 0 параллельны, когда пропорциональны коэффициенты А 1 = λА, В 1 = λВ. Если еще и С 1 = λС, то прямые совпадают. Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.

Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой

Определение. Прямая, проходящая через точку М 1 (х 1 , у 1) и перпендикулярная к прямой у = kx + b представляется уравнением:

Расстояние от точки до прямой

Теорема. Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С =0 определяется как

.

Доказательство. Пусть точка М 1 (х 1 , у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М 1:

(1)

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой. Если преобразовать первое уравнение системы к виду:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

Пример . Определить угол между прямыми: y = -3 x + 7; y = 2 x + 1.

k 1 = -3; k 2 = 2; tgφ = ; φ= π /4.

Пример . Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

Решение . Находим: k 1 = 3/5, k 2 = -5/3, k 1* k 2 = -1, следовательно, прямые перпендикулярны.

Пример . Даны вершины треугольника А(0; 1), B (6; 5), C (12; -1). Найти уравнение высоты, проведенной из вершины С.

Решение . Находим уравнение стороны АВ: ; 4 x = 6 y – 6;

2 x – 3 y + 3 = 0;

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b . k = . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .

Ответ: 3 x + 2 y – 34 = 0.

Каноническими уравнениями прямой в пространстве называются уравнения, определяющие прямую, проходящую через заданную точку коллинеарно направляющему вектору.

Пусть дана точка и направляющий вектор . Произвольная точка лежит на прямой l только в том случае, если векторы и коллинеарны, т. е. для них выполняется условие:

.

Приведённые выше уравнения и есть канонические уравнения прямой.

Числа m , n и p являются проекциями направляющего вектора на координатные оси. Так как вектор ненулевой, то все числа m , n и p не могут одновременно равняться нулю. Но одно или два из них могут оказаться равными нулю. В аналитической геометрии допускается, например, такая запись:

,

которая означает, что проекции вектора на оси Oy и Oz равны нулю. Поэтому и вектор , и прямая, заданная каноническими уравнениями, перпендикулярны осям Oy и Oz , т. е. плоскости yOz .

Пример 1. Составить уравнения прямой в пространстве, перпендикулярной плоскости и проходящей через точку пересечения этой плоскости с осью Oz .

Решение. Найдём точку пересечения данной плоскости с осью Oz . Так как любая точка, лежащая на оси Oz , имеет координаты , то, полагая в заданном уравнении плоскости x = y = 0 , получим 4z - 8 = 0 или z = 2 . Следовательно, точка пересечения данной плоскости с осью Oz имеет координаты (0; 0; 2) . Поскольку искомая прямая перпендикулярна плоскости, она параллельна вектору её нормали . Поэтому направляющим вектором прямой может служить вектор нормали заданной плоскости.

Теперь запишем искомые уравнения прямой, проходящей через точку A = (0; 0; 2) в направлении вектора :

Уравнения прямой, проходящей через две данные точки

Прямая может быть задана двумя лежащими на ней точками и В этом случае направляющим вектором прямой может служить вектор . Тогда канонические уравнения прямой примут вид

.

Приведённые выше уравнения и определяют прямую, проходящую через две заданные точки.

Пример 2. Составить уравнение прямой в пространстве, проходящей через точки и .

Решение. Запишем искомые уравнения прямой в виде, приведённом выше в теоретической справке:

.

Так как , то искомая прямая перпендикулярна оси Oy .

Прямая как линия пересечения плоскостей

Прямая в пространстве может быть определена как линия пересечения двух непараллельных плоскостей и , т. е. как множество точек, удовлетворяющих системе двух линейных уравнений

Уравнения системы называются также общими уравнениями прямой в пространстве.

Пример 3. Составить канонические уравнения прямой в пространстве, заданной общими уравнениями

Решение. Чтобы написать канонические уравнения прямой или, что то же самое, уравнения прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например yOz и xOz .

Точка пересечения прямой с плоскостью yOz имеет абсциссу x = 0 . Поэтому, полагая в данной системе уравнений x = 0 , получим систему с двумя переменными:

Её решение y = 2 , z = 6 вместе с x = 0 определяет точку A (0; 2; 6) искомой прямой. Полагая затем в заданной системе уравнений y = 0 , получим систему

Её решение x = -2 , z = 0 вместе с y = 0 определяет точку B (-2; 0; 0) пересечения прямой с плоскостью xOz .

Теперь запишем уравнения прямой, проходящей через точки A (0; 2; 6) и B (-2; 0; 0) :

,

или после деления знаменателей на -2:

,

Уравнение прямой на плоскости.
Направляющий вектор прямой. Вектор нормали

Прямая линия на плоскости – это одна из простейших геометрических фигур, знакомая вам ещё с младших классов, и сегодня мы узнаем, как с ней справляться методами аналитической геометрии. Для освоения материала необходимо уметь строить прямую; знать, каким уравнением задаётся прямая, в частности, прямая, проходящая через начало координат и прямые, параллельные координатным осям. Данную информацию можно найти в методичке Графики и свойства элементарных функций , я её создавал для матана, но раздел про линейную функцию получился очень удачным и подробным. Поэтому, уважаемые чайники, сначала разогрейтесь там. Кроме того, нужно обладать базовыми знаниями о векторах , иначе понимание материала будет неполным.

На данном уроке мы рассмотрим способы, с помощью которых можно составить уравнение прямой на плоскости. Рекомендую не пренебрегать практическими примерами (даже если кажется очень просто), так как я буду снабжать их элементарными и важными фактами, техническими приёмами, которые потребуются в дальнейшем, в том числе и в других разделах высшей математики.

  • Как составить уравнение прямой с угловым коэффициентом?
  • Как ?
  • Как найти направляющий вектор по общему уравнению прямой?
  • Как составить уравнение прямой по точке и вектору нормали?

и мы начинаем:

Уравнение прямой с угловым коэффициентом

Всем известный «школьный» вид уравнения прямой называется уравнением прямой с угловым коэффициентом . Например, если прямая задана уравнением , то её угловой коэффициент: . Рассмотрим геометрический смысл данного коэффициента и то, как его значение влияет на расположение прямой:

В курсе геометрии доказывается, что угловой коэффициент прямой равен тангенсу угла между положительным направлением оси и данной прямой : , причём угол «откручивается» против часовой стрелки.

Чтобы не загромождать чертёж, я нарисовал углы только для двух прямых. Рассмотрим «красную» прямую и её угловой коэффициент . Согласно вышесказанному: (угол «альфа» обозначен зелёной дугой). Для «синей» прямой с угловым коэффициентом справедливо равенство (угол «бета» обозначен коричневой дугой). А если известен тангенс угла, то при необходимости легко найти и сам угол с помощью обратной функции – арктангенса. Как говорится, тригонометрическая таблица или микрокалькулятор в руки. Таким образом, угловой коэффициент характеризует степень наклона прямой к оси абсцисс .

При этом возможны следующие случаи:

1) Если угловой коэффициент отрицателен: , то линия, грубо говоря, идёт сверху вниз. Примеры – «синяя» и «малиновая» прямые на чертеже.

2) Если угловой коэффициент положителен: , то линия идёт снизу вверх. Примеры – «чёрная» и «красная» прямые на чертеже.

3) Если угловой коэффициент равен нулю: , то уравнение принимает вид , и соответствующая прямая параллельна оси . Пример – «жёлтая» прямая.

4) Для семейства прямых , параллельных оси (на чертеже нет примера, кроме самой оси ), углового коэффициента не существует (тангенс 90 градусов не определён) .

Чем больше угловой коэффициент по модулю, тем круче идёт график прямой .

Например, рассмотрим две прямые . Здесь , поэтому прямая имеет более крутой наклон. Напоминаю, что модуль позволяет не учитывать знак, нас интересуют только абсолютные значения угловых коэффициентов.

В свою очередь, прямая более крутА, чем прямые .

Обратно: чем меньше угловой коэффициент по модулю, тем прямая является более пологой .

Для прямых справедливо неравенство , таким образом, прямая более полога. Детская горка, чтобы не насадить себе синяков и шишек.

Зачем это нужно?

Продлить ваши мучения Знания вышеперечисленных фактов позволяет немедленно увидеть свои ошибки, в частности, ошибки при построении графиков – если на чертеже получилось «явно что-то не то». Желательно, чтобы вам сразу было понятно, что, например, прямая весьма крутА и идёт снизу вверх, а прямая – очень полога, близко прижата к оси и идёт сверху вниз.

В геометрических задачах часто фигурируют несколько прямых, поэтому их удобно как-нибудь обозначать.

Обозначения : прямые обозначаются маленькими латинскими буквами: . Популярный вариант – обозначение одной и той же буквой с натуральными подстрочными индексами. Например, те пять прямых, которые мы только что рассмотрели, можно обозначить через .

Поскольку любая прямая однозначно определяется двумя точками, то её можно обозначать данными точками: и т.д. Обозначение совершенно очевидно подразумевает, что точки принадлежат прямой .

Пора немного размяться:

Как составить уравнение прямой с угловым коэффициентом?

Если известна точка , принадлежащая некоторой прямой, и угловой коэффициент этой прямой, то уравнение данной прямой выражается формулой :

Пример 1

Составить уравнение прямой с угловым коэффициентом , если известно, что точка принадлежит данной прямой.

Решение : Уравнение прямой составим по формуле . В данном случае:

Ответ :

Проверка выполняется элементарно. Во-первых, смотрим на полученное уравнение и убеждаемся, что наш угловой коэффициент на своём месте. Во-вторых, координаты точки должны удовлетворять данному уравнению. Подставим их в уравнение:

Получено верное равенство, значит, точка удовлетворяет полученному уравнению.

Вывод : уравнение найдено правильно.

Более хитрый пример для самостоятельного решения:

Пример 2

Составить уравнение прямой, если известно, что её угол наклона к положительному направлению оси составляет , и точка принадлежит данной прямой.

Если возникли затруднения, перечитайте теоретический материал. Точнее больше практический, многие доказательства я пропускаю.

Прозвенел последний звонок, отгремел выпускной бал, и за воротами родной школы нас поджидает, собственно, аналитическая геометрия. Шутки закончились…. А может быть только начинаются =)

Ностальгически машем ручкой привычному и знакомимся с общим уравнением прямой. Поскольку в аналитической геометрии в ходу именно оно:

Общее уравнение прямой имеет вид : , где – некоторые числа. При этом коэффициенты одновременно не равны нулю, так как уравнение теряет смысл.

Оденем в костюм и галстук уравнение с угловым коэффициентом . Сначала перенесём все слагаемые в левую часть:

Слагаемое с «иксом» нужно поставить на первое место:

В принципе, уравнение уже имеет вид , но по правилам математического этикета коэффициент первого слагаемого (в данном случае ) должен быть положительным. Меняем знаки:

Запомните эту техническую особенность! Первый коэффициент (чаще всего ) делаем положительным!

В аналитической геометрии уравнение прямой почти всегда будет задано в общей форме. Ну, а при необходимости его легко привести к «школьному» виду с угловым коэффициентом (за исключением прямых, параллельных оси ординат).

Зададимся вопросом, что достаточно знать, чтобы построить прямую? Две точки. Но об этом детском случае позже, сейчас властвуют палочки со стрелочками. У каждой прямой есть вполне определённый наклон, к которому легко «приспособить» вектор .

Вектор, который параллелен прямой, называется направляющим вектором данной прямой . Очевидно, что у любой прямой бесконечно много направляющих векторов, причём все они будут коллинеарны (сонаправлены или нет – не важно).

Направляющий вектор я буду обозначать следующим образом: .

Но одного вектора недостаточно для построения прямой, вектор является свободным и не привязан к какой-либо точке плоскости. Поэтому дополнительно необходимо знать некоторую точку , которая принадлежит прямой.

Как составить уравнение прямой по точке и направляющему вектору?

Если известна некоторая точка , принадлежащая прямой, и направляющий вектор этой прямой, то уравнение данной прямой можно составить по формуле :

Иногда его называют каноническим уравнением прямой .

Что делать, когда одна из координат равна нулю, мы разберёмся в практических примерах ниже. Кстати, заметьте – сразу обе координаты не могут равняться нулю, так как нулевой вектор не задаёт конкретного направления.

Пример 3

Составить уравнение прямой по точке и направляющему вектору

Решение : Уравнение прямой составим по формуле . В данном случае:

С помощью свойств пропорции избавляемся от дробей:

И приводим уравнение к общему виду:

Ответ :

Чертежа в таких примерах, как правило, делать не нужно, но понимания ради:

На чертеже мы видим исходную точку , исходный направляющий вектор (его можно отложить от любой точки плоскости) и построенную прямую . Кстати, во многих случаях построение прямой удобнее всего осуществлять как раз с помощью уравнения с угловым коэффициентом. Наше уравнение легко преобразовать к виду и без проблем подобрать ещё одну точку для построения прямой.

Как отмечалось в начале параграфа, у прямой бесконечно много направляющих векторов, и все они коллинеарны. Для примера я нарисовал три таких вектора: . Какой бы направляющий вектор мы не выбрали, в результате всегда получится одно и то же уравнение прямой .

Составим уравнение прямой по точке и направляющему вектору :

Разруливаем пропорцию:

Делим обе части на –2 и получаем знакомое уравнение:

Желающие могут аналогичным образом протестировать векторы или любой другой коллинеарный вектор.

Теперь решим обратную задачу:

Как найти направляющий вектор по общему уравнению прямой?

Очень просто:

Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является направляющим вектором данной прямой.

Примеры нахождения направляющих векторов прямых:

Утверждение позволяет найти лишь один направляющий вектор из бесчисленного множества, но нам больше и не нужно. Хотя в ряде случаев координаты направляющих векторов целесообразно сократить:

Так, уравнение задаёт прямую, которая параллельна оси и координаты полученного направляющего вектора удобно разделить на –2, получая в точности базисный вектор в качестве направляющего вектора. Логично.

Аналогично, уравнение задаёт прямую, параллельную оси , и, разделив координаты вектора на 5, получаем в качестве направляющего вектора орт .

Теперь выполним проверку Примера 3 . Пример уехал вверх, поэтому напоминаю, что в нём мы составили уравнение прямой по точке и направляющему вектору

Во-первых , по уравнению прямой восстанавливаем её направляющий вектор: – всё нормально, получили исходный вектор (в ряде случаев может получиться коллинеарный исходному вектор, и это обычно несложно заметить по пропорциональности соответствующих координат).

Во-вторых , координаты точки должны удовлетворять уравнению . Подставляем их в уравнение:

Получено верное равенство, чему мы очень рады.

Вывод : задание выполнено правильно.

Пример 4

Составить уравнение прямой по точке и направляющему вектору

Это пример для самостоятельного решения. Решение и ответ в конце урока. Крайне желательно сделать проверку по только что рассмотренному алгоритму. Старайтесь всегда (если это возможно) выполнять проверку на черновике. Глупо допускать ошибки там, где их 100%-но можно избежать.

В том случае, если одна из координат направляющего вектора нулевая, поступают очень просто:

Пример 5

Решение : Формула не годится, так как знаменатель правой части равен нулю. Выход есть! Используя свойства пропорции, перепишем формулу в виде , и дальнейшее покатилось по глубокой колее:

Ответ :

Проверка :

1) Восстановим направляющий вектор прямой :
– полученный вектор коллинеарен исходному направляющему вектору.

2) Подставим координаты точки в уравнение :

Получено верное равенство

Вывод : задание выполнено правильно

Возникает вопрос, зачем маяться с формулой , если существует универсальная версия , которая сработает в любом случае? Причин две. Во-первых, формула в виде дроби гораздо лучше запоминается . А во-вторых, недостаток универсальной формулы состоит в том, что заметно повышается риск запутаться при подстановке координат.

Пример 6

Составить уравнение прямой по точке и направляющему вектору .

Это пример для самостоятельного решения.

Вернёмся к вездесущим двум точкам:

Как составить уравнение прямой по двум точкам?

Если известны две точки , то уравнение прямой, проходящей через данные точки, можно составить по формуле:

На самом деле это разновидность формулы и вот почему: если известны две точки , то вектор будет направляющим вектором данной прямой. На уроке Векторы для чайников мы рассматривали простейшую задачу – как найти координаты вектора по двум точкам. Согласно данной задаче, координаты направляющего вектора:

Примечание : точки можно «поменять ролями» и использовать формулу . Такое решение будет равноценным.

Пример 7

Составить уравнение прямой по двум точкам .

Решение : Используем формулу:

Причёсываем знаменатели:

И перетасовываем колоду:

Именно сейчас удобно избавиться от дробных чисел. В данном случае нужно умножить обе части на 6:

Раскрываем скобки и доводим уравнение до ума:

Ответ :

Проверка очевидна – координаты исходных точек должны удовлетворять полученному уравнению:

1) Подставим координаты точки :

Верное равенство.

2) Подставим координаты точки :

Верное равенство.

Вывод : уравнение прямой составлено правильно.

Если хотя бы одна из точек не удовлетворяет уравнению, ищите ошибку.

Стоит отметить, что графическая проверка в данном случае затруднительна, поскольку построить прямую и посмотреть, принадлежат ли ей точки , не так-то просто.

Отмечу ещё пару технических моментов решения. Возможно, в данной задаче выгоднее воспользоваться зеркальной формулой и, по тем же точкам составить уравнение:

Таки дробей поменьше. Если хотите, можете довести решение до конца, в результате должно получиться то же самое уравнение.

Второй момент состоит в том, чтобы посмотреть на итоговый ответ и прикинуть, нельзя ли его ещё упростить? Например, если получилось уравнение , то здесь целесообразно сократить на двойку: – уравнение будет задавать ту же самую прямую. Впрочем, это уже тема разговора о взаимном расположении прямых .

Получив ответ в Примере 7, я на всякий случай, проверил, не делятся ли ВСЕ коэффициенты уравнения на 2, 3 или 7. Хотя, чаще всего подобные сокращения осуществляются ещё по ходу решения.

Пример 8

Составить уравнение прямой, проходящей через точки .

Это пример для самостоятельного решения, который как раз позволит лучше понять и отработать технику вычислений.

Аналогично предыдущему параграфу: если в формуле один из знаменателей (координата направляющего вектора) обращается в ноль, то переписываем её в виде . И снова заметьте, как неуклюже и запутанно она стала выглядеть. Не вижу особого смысла приводить практические примеры, поскольку такую задачу мы уже фактически прорешали (см. № 5, 6).

Вектор нормали прямой (нормальный вектор)

Что такое нормаль? Простыми словами, нормаль – это перпендикуляр. То есть, вектор нормали прямой перпендикулярен данной прямой. Очевидно, что у любой прямой их бесконечно много (так же, как и направляющих векторов), причём все векторы нормали прямой будут коллинеарными (сонаправленными или нет – без разницы).

Разборки с ними будут даже проще, чем с направляющими векторами:

Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является вектором нормали данной прямой.

Если координаты направляющего вектора приходится аккуратно «вытаскивать» из уравнения, то координаты вектора нормали достаточно просто «снять».

Вектор нормали всегда ортогонален направляющему вектору прямой. Убедимся в ортогональности данных векторов с помощью скалярного произведения :

Приведу примеры с теми же уравнениями, что и для направляющего вектора:

Можно ли составить уравнение прямой, зная одну точку и вектор нормали? Нутром чувствуется, можно. Если известен вектор нормали, то однозначно определено и направление самой прямой – это «жёсткая конструкция» с углом в 90 градусов.

Как составить уравнение прямой по точке и вектору нормали?

Если известна некоторая точка , принадлежащая прямой, и вектор нормали этой прямой, то уравнение данной прямой выражается формулой :

Тут всё обошлось без дробей и прочих нежданчиков. Такой вот у нас нормальный вектор. Любите его. И уважайте =)

Пример 9

Составить уравнение прямой по точке и вектору нормали . Найти направляющий вектор прямой.

Решение : Используем формулу:

Общее уравнение прямой получено, выполним проверку:

1) «Снимаем» координаты вектора нормали с уравнения : – да, действительно, получен исходный вектор из условия (либо должен получиться коллинеарный исходному вектор).

2) Проверим, удовлетворяет ли точка уравнению :

Верное равенство.

После того, как мы убедились в том, что уравнение составлено правильно, выполним вторую, более лёгкую часть задания. Вытаскиваем направляющий вектор прямой:

Ответ :

На чертеже ситуация выглядит следующим образом:

В целях тренировки аналогичная задача для самостоятельного решения:

Пример 10

Составить уравнение прямой по точке и нормальному вектору . Найти направляющий вектор прямой.

Заключительный раздел урока будет посвящен менее распространённым, но тоже важным видам уравнений прямой на плоскости

Уравнение прямой в отрезках.
Уравнение прямой в параметрической форме

Уравнение прямой в отрезках имеет вид , где – ненулевые константы. Некоторые типы уравнений нельзя представить в таком виде, например, прямую пропорциональность (так как свободный член равен нулю и единицу в правой части никак не получить).

Это, образно говоря, «технический» тип уравнения. Обыденная задача состоит в том, чтобы общее уравнение прямой представить в виде уравнения прямой в отрезках . Чем оно удобно? Уравнение прямой в отрезках позволяет быстронайти точки пересечения прямой с координатными осями, что бывает очень важным в некоторых задачах высшей математики.

Найдём точку пересечения прямой с осью . Обнуляем «игрек», и уравнение принимает вид . Нужная точка получается автоматически: .

Аналогично с осью – точка, в которой прямая пересекает ось ординат.

Пусть даны две точки М 1 (х 1 ,у 1) и М 2 (х 2 ,у 2) . Запишем уравнение прямой в виде (5), где k пока неизвестный коэффициент:

Так как точка М 2 принадлежит заданной прямой, то её координаты удовлетворяют уравнению (5): . Выражая отсюда и подставив его в уравнение (5) получим искомое уравнение:

Если это уравнение можно переписать в виде, более удобном для запоминания:

(6)

Пример. Записать уравнение прямой, проходящей через точки М 1 (1,2) и М 2 (-2,3)

Решение . . Используя свойство пропорции, и выполнив необходимые преобразования, получим общее уравнение прямой:

Угол между двумя прямыми

Рассмотрим две прямые l 1 и l 2 :

l 1 : , , и

l 2 : , ,

φ- угол между ними (). Из рис.4 видно: .

Отсюда , или

С помощью формулы (7) можно определить один из углов между прямыми. Второй угол равен .

Пример . Две прямые заданы уравнениями у=2х+3 и у=-3х+2. найти угол между этими прямыми.

Решение . Из уравнений видно, что k 1 =2, а k 2 =-3. подставляя данные значения в формулу (7), находим

. Таким образом, угол между данными прямыми равен .

Условия параллельности и перпендикулярности двух прямых

Если прямые l 1 и l 2 параллельны, то φ=0 и tgφ=0 . из формулы (7) следует, что , откуда k 2 =k 1 . Таким образом, условием параллельности двух прямых является равенство их угловых коэффициентов.

Если прямые l 1 и l 2 перпендикулярны, то φ=π/2 , α 2 = π/2+ α 1 . . Таким образом, условие перпендикулярности двух прямых состоит в том, что их угловые коэффициенты обратны по величине и противоположны по знаку.

Расстояние от точки до прямой

Теорема. Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С =0 определяется как

Доказательство. Пусть точка М 1 (х 1 , у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М 1:

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой.

Если преобразовать первое уравнение системы к виду:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

Пример. Определить угол между прямыми: y = -3x + 7; y = 2x + 1.

k 1 = -3; k 2 = 2 tgj= ; j = p/4.

Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

Находим: k 1 = 3/5, k 2 = -5/3, k 1 k 2 = -1, следовательно, прямые перпендикулярны.

Пример. Даны вершины треугольника А(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины С.



Находим уравнение стороны АВ: ; 4x = 6y – 6;

2x – 3y + 3 = 0;

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b.

k= . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .

Ответ: 3x + 2y – 34 = 0.

Расстояние от точки до прямой определяется длиной перпендикуляра, опущенного из точки на прямую.

Если прямая параллельна плоскости проекции (h | | П 1) , то для того чтобы определить расстояние от точкиА до прямой h необходимо опустить перпендикуляр из точки А на горизонталь h .

Рассмотрим более сложный пример, когда прямая занимает общее положение. Пусть необходимо определить расстояние от точки М до прямойа общего положения.

Задача на определение расстояния между параллельными прямыми решается аналогично предыдущей. На одной прямой берется точка, из нее опускается перпендикуляр на другую прямую. Длина перпендикуляра равна расстоянию между параллельными прямыми.

Кривой второго порядка называется линия, определяемая уравнением второй степени относительно текущих декартовых координат. В общем случае Ах 2 + 2Вху +Су 2 + 2Дх + 2Еу +F = 0,



где А, В, С, Д, Е, F – действительные числа и по крайней мере одно из чисел А 2 +В 2 +С 2 ≠0.

Окружность

Центр окружности – это геометрическое место точек в плоскости равностоящих от точки плоскости С(а,b).

Окружность задается следующим уравнением:

Где х,у – координаты произвольной точки окружности, R - радиус окружности.

Признак уравнения окружности

1. Отсутствует слагаемое с х,у

2. Равны Коэффициенты при х 2 и у 2

Эллипс

Эллипсом называется геометрическое место точек в плоскости, сумма расстояний каждой из которых от двух данных точек этой плоскости называется фокусами (постоянная величина).

Каноническое уравнение эллипса:

Х и у принадлежат эллипсу.

а – большая полуось эллипса

b – малая полуось эллипса

У эллипса 2 оси симметрии ОХ и ОУ. Оси симметрии эллипса – его оси, точка их пересечения – центр эллипса. Та ось на которой расположены фокусы, называется фокальной осью . Точка пересечения эллипса с осями – вершина эллипса.

Коэффициент сжатия (растяжения): ε = с/а – эксцентриситет (характеризует форму эллипса), чем он меньше, тем меньше вытянут эллипс вдоль фокальной оси.

Если центры эллипса находятся не в центре С(α, β)

Гипербола

Гиперболой называется геометрическое место точек в плоскости, абсолютная величина разности расстояний, каждое из которых от двух данных точек этой плоскости, называемых фокусами есть величина постоянная, отличная от ноля.

Каноническое уравнение гиперболы

Гипербола имеет 2 оси симметрии:

а – действительная полуось симметрии

b – мнимая полуось симметрии

Ассимптоты гиперболы:

Парабола

Параболой называется геометрическое место точек в плоскости, равноудаленных от данной точки F, называемой фокусом и данной прямой, называемой директрисой.

Каноническое уравнение параболы:

У 2 =2рх, где р – расстояние от фокуса до директрисы (параметр параболы)

Если вершина параболы С (α, β), то уравнение параболы (у-β) 2 =2р(х-α)

Если фокальную ось принять за ось ординат, то уравнение параболы примет вид: х 2 =2qу